We are exploring the use of a fluorescent hydrogel to examine changes to the microenvironment induced during embryonic stem cells (ESCs) differentiation, with a specific interest in osteogenesis, a process requiring matrix secretion and mineralization. We have begun an initial investigation testing the capacity of this material to maintain ESC growth and support osteogenic differentiation.

RESULTS

Figure 2: (A) Phenotypic appearance of mESC cultures during Osteogenic Differentiation. Scale bars = 500 µm

- **Figure 3:** (A) Calcium Assay (B) Alkaline Phosphatase activity

CONCLUSION

- Cross-linking reaction precedes for over 10 days in 4°C
- Glyceraldehyde modified hydrogel induced cell clusters compared to the flat lawn of cells in the control
- Current culturing methods must be adapted to suit 3D culturing systems

ACKNOWLEDGEMENTS

The work was supported in part by NSF IGERT: Video Bioinformatics DGE 0903667; UC Reagent Faculty Fellowship (J.G.L.), NSF-CBET - 0847070 (J.G.L.) NSF BRIDGE EEC-0927297 (J.G.L.) AGEP (J.M.L.) , UCR Gradate Fellowship (J.M.L.) Dr. Liao for access to flexstation; Yu-Jer Hwang; Beatrice Kuske, Dorota Kaniowska;