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Cell Segmentation: 50 Years Down the Road

E
ver since the establishment of 
cell theory in the early 19th 
century, which recognized the 
cell as the fundamental build-
ing unit of life, biologists have 

sought to explain the underlying princi-
ples. Momentous discoveries were made 
over the course of many decades of 
research [1], but the quest to attain full 
understanding of cellular mechanisms 
and how to manipulate them to improve 
health continues to the present day, 
with bigger budgets, more minds, and 
more sophisticated tools than ever 
before. One of the tools to which a great 
deal of the progress in cell biology can 
be attributed is light microscopy [2]. 
The field has come a long way since 
Antoni van Leeuwenhoek’s first steps in 
the 1670s toward improving and 
exploiting microscopic imaging for 
studying life at the cellular level. Not 
only do biologists today have a plethora 
of different, complementary microscop-
ic imaging techniques at their disposal 
that enable them to visualize phenome-
na even way below the classical diffrac-
tion limit of light, advanced microscope 
systems also allow them to easily 
acquire very large numbers of images 
within just a matter of hours. The abun-
dance, heterogeneity, dimensionality, 
and complexity of the data generated in 
modern imaging experiments rule out 
manual image management, processing, 
and analysis. Consequently, computer-
ized techniques for performing these 
tasks have become of key importance for 
further progress in cell biology [3]–[6]. 
A central problem in many studies, and 
often regarded as the cornerstone of 
image analysis, is image segmentation. 

Specifically, since cellular morphology 
is an important phenotypic feature that 
is indicative of the physiological state of 
a cell, and since the cell contour is often 
required for subsequent analysis of 
intracellular processes (zooming in to 
nanoscale), or of cell sociology (zoom-
ing out to millimeter scale), the prob-
lem of cell segmentation has received 
increasing attention in past years [7]. 
Here we reflect on how the field has 
evolved over the years and how past 
developments can be expected to extrap-
olate into the future. 

A VERY BRIEF HISTORY 
OF CELL ANALYSIS
The first uses of computers for the 
 analysis of cells date back more than half 
a century. Already in the mid-1950s, sys-
tems were developed to automate the 
classification of smears of exfoliated 
cells, with the ultimate aim to enable 
mass screening for cervical cancer. These 
systems applied thresholding-based deci-
sion rules to serial one-dimensional (1-D) 
microscopic line scans of a specimen [8]. 
The 1960s witnessed the first examples 
of automated processing of two-dimen-
sional (2-D) images for the purpose of 
differential counting of white blood cells 
(leukocytes) according to their main 
classes based on simple colorimetric and 
morphological measurements [9]. 
Commercial systems for performing this 
routine clinical test hit the market 
around the mid-1970s and even con-
tained multiple computer circuits to par-
allelize the tasks of analyzing the image 
of the previous cell, while grabbing the 
image of the present cell, and at the 
same time locating the next cell in the 
specimen [10]. These were also the times 
when the first  computer   -assisted micro-
scopes were developed for tracing and 

morphological analysis of neuronal cells 
[11]. The advent of confocal microscope 
systems in the 1980s opened the door to 
three-dimensional (3-D) cell image anal-
ysis. But it was not until the 1990s, when 
computers became powerful enough 
to handle 3-D data, or even complex 2-D 
data such as in histopathology [12], that 
the image processing and computer 
vision communities really began to 
take  up the challenge. Over the past 
decades, literature on the subject has 
grown exponentially, with more than 
half of the bulk of papers appearing after 
the year 2000. Published cell image anal-
ysis methods have already been the basis 
of numerous studies involving cell 
counting (numbers), the identification of 
cell types or cell phases (shapes), the 
quantification of cell migration and 
interaction (morphodynamics), cellular 
sociology (tissue-level organization), 
and intracellular structures (cell 
 organization) [5].

COMMON CELL SEGMENTATION 
APPROACHES
Automated image segmentation for cell 
analysis is generally a difficult problem 
due to the large variability (different 
microscopes, stains, cell types, and cell 
densities; see Figure 1) and complexity 
of the data (possibly time-lapse, 
acquired at multiple wavelengths, using 
multiple microscopes, and containing 
large numbers of cells). Nevertheless, 
screening the literature published on 
the subject since 1960, we find that the 
vast majority of cell segmentation 
methods are based on only a few basic 
approaches. Here we highlight the most 
common ones. Approaches specific to 
neuron segmentation are excluded, as 
these usually address the quite differ-
ent problem of tracing the extensive 
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 dendritic arborizations, and have been 
reviewed recently [11]. Generally appli-
cable methods for image denoising 
prior to segmentation are also ignored.

INTENSITY THRESHOLDING
The first and, ironically, still one of the 
most predominant approaches to cell 
segmentation is intensity thresholding 
[13]. The underlying assumption is that 
cells have significantly and consistently 
different intensities than the back-
ground [Figure 2(a)], either globally, in 
which case a fixed threshold would suf-
fice, or locally, which would require 

adaptive thresholding. Approaches to 
automated threshold selection are usu-
ally based on statistical analysis of the 
global or local image intensities using 
the histogram. However, in practice, the 
fundamental assumption is often violat-
ed, and thresholding alone produces 
poor segmentation results. If at all, most 
cell segmentation methods apply thresh-
olding only as a first step in the pipeline.

FEATURE DETECTION
Rather than by their absolute intensities, 
cells may be segmented based on intensi-
ty derived features that can be easily 

detected using linear image filtering. For 
example, at low magnifications, cells 
resemble compact particles, and may be 
found using a blob detector such as the 
Gaussian or Laplacian-of-Gaussian filter 
[Figure 2(b)]. At higher magnifications, 
cells appear as larger regions, but if their 
shapes are relatively invariant, a dedicat-
ed filter template could be derived from 
the images. Alternatively, in more vari-
able scenarios, edge detection (first-
order differential filtering) or ridge 
detection (second-order differential fil-
tering) is often used, followed by some 
linking procedure [13]. Similar to 
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[FIG1] Cell images may vary widely, depending on the type of microscopy and staining used, as well as the cell type and cell 
density. This makes the development of a generally applicable cell segmentation method a huge challenge. Shown here are 
various illustrative examples of cell images (with cell density increasing from left to right), acquired using (a) and (b) bright-field 
microscopy, (c) phase-contrast microscopy, (d) differential interference contrast microscopy, and (e)–(h) fluorescence microscopy. 
In the latter case, the use of fluorescent dyes or proteins enables biologists to selectively label virtually any target of interest in 
the cell or nucleus, such as (e) the nucleoprotein histone involved in DNA folding, (f) DNA binding proteins such as Rad18 or 
Rad54, or (g) cell adhesion proteins such as E-cadherin. The resulting additional variability in cell appearance further complicates 
the development of generic cell segmentation methods. Finally, whereas most cells are fairly spherical, some classes of cells may 
show quite different shape. Especially, (h) neurons may extend far beyond the compact cell body.
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thresholding, such filters alone usually 
do not produce definitive cell outlines, 
but may provide useful cues for subse-
quent steps in the pipeline.

MORPHOLOGICAL FILTERING
Another popular class of filters are those 
from the field of mathematical morphol-
ogy. Being nonlinear, operators such as 
erosion, dilation, opening, and closing 
allow for the examination and manipula-
tion of geometrical and topological prop-
erties of objects in images and are often 

used in connection with cell segmenta-
tion. More complicated filters can be eas-
ily constructed by combination or 
successive application of such operators. 
A distinction must be made between 
binary morphology and grayscale mor-
phology [13]. The former is used mostly 
as a postprocessing step to polish coarse 
segmentations [Figure 2(a)] while the 
latter is used mostly as a preprocessing 
step to enhance or  suppress specific 
image structures for segmentation 
[Figure 2(c)].

REGION ACCUMULATION
An alternative approach to cell seg-
mentation is to start from selected 
seed points in the image and to itera-
tively add connected points to form 
labeled regions. The most straightfor-
ward implementation of this idea is 
ordinary region growing, which works 
per neighborhood layer of connected 
points and, when applied directly to 
the image, assumes (and suffers from) 
a similar image model as in the case of 
intensity thresholding. Hierarchical 

(a) (b) (c) (d)

[FIG2] Examples of cell image segmentation based on the discussed approaches. The columns show, respectively, the input 
images, the automatically found cell contours (overlaid in green), and the corresponding labeled cell regions (arbitrary colors). 
(a) Cells that are fairly well separated and clearly brighter than the background are easily segmented using thresholding. Binary 
ultimate erosion and reconstruction was used to split the few clumped cells. (b) Scenarios with higher cell densities and 
intensity variations require more sophisticated methods. The method used here involves graph-cuts-based binarization, 
Laplacian-of-Gaussian-based cell detection (see red dots), and marker-based clustering (images from [14] and used with 
permission). (c) Membrane-stained images are ideally suited for watershed-based segmentation. Grayscale morphological 
prefiltering was used both for background estimation (opening operation) and filling imperfectly stained segments (closing 
operation). (d) Studies of intracellular dynamic processes often result in images with significant intensity variations (in both 
space and time) and require robust cell segmentation and tracking methods. The method used here is based on level sets [15]. 
All of these methods were specifically designed for the given application and required careful parameter tuning.
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split-and-merge schemes, operating 
per resolution layer and using some 
uniformity predicate, have also been 
used occasionally. Another example is 
the watershed transform [13], the 
main segmentation approach from 
mathematical morphology, which 
works per intensity layer and requires 
an edge enhanced image  (gradient 
magnitude), as it is commonly desired 
to have the watershed lines at the 
edges [Figure 2(c)]. Though by far the 
most popular region accumulation 
approach, the watershed transform 
is  infamous for producing overseg-
mentation and usually requires further 
 processing.

DEFORMABLE MODEL FITTING
The final class of cell segmentation 
approaches mentioned here consists of 
procedures that fit a deformable model 
to the image data [Figure 2(d)]. 
Deformable models may be formulated 
either explicitly, as a parametric con-
tour (2-D) or surface (3-D), or implicit-
ly, as the zero-level of a function with 
dimensionality (nD) one higher than 
the image to be segmented. Level sets 
have the advantage that they naturally 
handle topological changes, such as cell 
division, and are therefore attractive for 
cell tracking [16]. Initialized by a first, 
coarse segmentation, a deformable 
model is iteratively evolved to minimize 

a predefined energy functional, which 
typically consists of image-based and 
shape-based terms, the latter of which 
allow the incorporation of prior knowl-
edge to constrain the results. The ener-
gy terms need to be carefully designed 
to avoid erroneous segmentation.

CELL SEGMENTATION 
APPROACHES ANALYZED
It is interesting to analyze the usage of the 
different approaches to cell segmentation 
over the years (see Figure 3 in relation to 
the following discussion). Intensity 
thresholding, being the conceptually sim-
plest and computationally cheapest of all, 
was the first approach to be used since the 
1960s. Soon after, it was realized that dif-
ferential features (in particular, edges) 
could also be computed relatively easily 
and might provide useful information. 
The field of mathematical morphology 
started to develop around the same time, 
and its basic operators were first used in 
the late 1970s for refining the results of 
thresholding-based cell segmentation. 
During that same decade, all mentioned 
region accumulation approaches were 
conceived, and first examples of their 
usage in the context of cell image analysis 
appeared around the mid-1980s. Finally, 
the first deformable model fitting 
approaches for image segmentation were 
introduced in the second half of the 1980s 
and were first applied to cell images in the 
early 1990s. Since then, miscellaneous 
other segmentation approaches found 
their way into the field, with as yet limited 
usage. Examples include dynamic pro-
gramming, graph cuts, active masks, sup-
port vector machines, tensor voting 
schemes, neural networks, Markov ran-
dom fields, and other  concepts.

Several observations follow from 
the  analysis of the literature on cell 
 segmentation in the past 50 years. First, 
most of the different approaches were 
originally developed for applications in 
other fields (computer vision, robotics, 
materials science, medical imaging), 
and were later adopted for cell segmen-
tation. This is remarkable, given the 
unique and unparalleled challenges in 
cell image analysis, which should pro-
voke the development of original ideas. 

[FIG3] Literature on cell image analysis shows an exponentially increasing interest 
in cell segmentation and the emergence of new approaches for this purpose. In 
total, 250 journal papers describing cell segmentation methods were analyzed for 
this article. Part (a) shows their time histogram using lustrum bins (as indicated by 
the asterisk, the last bin obviously contains only partial data, up to March 2012). 
The distribution is representative of that of the total numbers of papers published 
on the subject in the various periods. Part (b) shows the breakdown of published 
methods per lustrum into six main classes of approaches (explained in the main 
text): intensity thresholding (blue), feature detection (red), morphological filtering 
(green), region accumulation (yellow), deformable model fitting (violet), and 
miscellaneous approaches (magenta) that could not be classified as any of the 
former. Most methods use a combination of several approaches.
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Second, even though new approaches 
are introduced once in a while, they 
seem to never fully replace old ones. 
Apparently, while none of them alone 
produces satisfactory results, they all 
continue to be useful to some extent. 
Third, as a consequence, methods pro-
posed in recent times are rarely based 
on a single new concept, but are often 
merely new combinations of the dis-
cussed approaches, tailored to a specific 
application. Rather than converging to a 
robust, unified solution, it thus seems 
that the field is diverging, and by now 
almost as many cell segmentation meth-
ods have been developed as there exist 
cell analysis problems [7]. However, the 
explosion of technical papers in the past 
decade suggests that the performance 
and applicability of these methods 
remain limited, and more powerful 
methods will need to be developed.

THE FUTURE OF CELL 
SEGMENTATION? 
Reflecting on the developments in the 
field in the past 50 years, one might won-
der what to expect from the next 50 years 
of research. As early as 1966, researchers 
already exclaimed that “automation of the 
acquisition and interpretation of data in 
microscopy has been a focus of biomedical 
research for almost a decade,” and they 
concluded that “many facets of the prob-
lem appear to be well within the grasp of 
present-day technology,” leading them to 
anticipate that “modern large-capacity, 
high-speed data facilities at last provide 
the ability to manipulate the hitherto 
unmanageable quantities of optical infor-
mation contained within all but the sim-
plest images” [9]. On one hand, it may feel 
embarrassing to admit that today, half a 
century down the road, very similar 
remarks still apply. It seems as if from the 
very beginning, the “grasp of present-day 
technology” in the field of image analysis 
has held a firm position a few years ahead 
in the future, barely able to keep up with 
the rate of progress in its application 
areas. While microscopic imaging, biologi-
cal experimentation, and computer hard-
ware development all underwent major 
revolutions in the past decades, most cell 
image analysis methods are still based on 

textbook ingredients [13] from the early 
days. On the other hand, perhaps this is 
just a testimony to the fact that the ease 
with which humans can see things in 
images is very deceptive, and computeriz-
ing this capacity is actually a notoriously 
difficult problem. The provisional solution 
has thus far been to isolate applications 
and to develop a dedicated method for 
each. But the real challenge remains to 
design methods that are sufficiently 
generic to be easily trainable for a wide 
range of applications while consistently 
achieving high sensitivity and specificity 
in each case. Perhaps the rapidly increas-
ing market share of alternative segmenta-
tion approaches (Figure 3) signifies the 
beginning of a new era. Important cata-
lysts for the development of more power-
ful methods will be improved availability 
and testability. The technical literature is 
full of alleged great methods, which were 
claimed to beat all previous methods for a 
given application, but subsequently disap-
peared into oblivion because no one was 
able to use or reproduce them. Their avail-
ability in popular (open-source) image 
analysis platforms will alleviate this prob-
lem and should be increasingly enforced 
before publication. But even then, meth-
ods may be easily abused by others to 
“prove” superiority of their own methods. 
The organization of open challenges based 
on standardized test data and criteria 
should suppress this practice and can be 
expected to further accelerate progress in 
the field in the near future.
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