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Accurate Construction of Consensus Genetic
Maps via Integer Linear Programming

Yonghui Wu, Timothy J. Close, and Stefano Lonardi

Abstract—We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs.
The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the
vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting
consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm
that takes into account two types of errors that may be present in the input maps, namely local reshuffles and global displacements.
The resulting combinatorial optimization problem is in turn expressed as an integer linear program. A fast approximation algorithm is
proposed, and an additional speed-up heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP
which is freely available for academic use. An extensive set of experiments show that MERGEMAP consistently outperforms JOINMAP,
which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for

download at http://www.cs.ucr.edu/~yonghui/mgmap.html.

Index Terms—Linear programming, Constrained optimization, Algorithms, Biology and Genetics

1 INTRODUCTION

Genetic linkage maps represent the relative positions of
genetic markers along a chromosome. The distance be-
tween markers is associated with the frequency at which
two genetic loci become separated during chromosomal
recombination.

The problem of building genetic linkage maps from
genotyping data can be traced back to the beginning of
the last century when life scientists started to investigate
the recombinational nature and cellular behavior of chro-
mosomes. In his pioneering work, Sturtevant studied in
1913 the first genetic linkage map of chromosome X of
Drosophila melanogaster [1]. Early genetic linkage maps
had just a few tens of phenotypic markers obtained
one by one by recording biochemical and morphological
variations of the organism under study, mainly following
mutation. With the introduction of DNA-based markers
(i.e., RFLPs, RAPDs, SSRs and AFLPs) genetic maps have
become much more densely populated. The number of
markers has increased recently well above a thousand
in a number of organisms with the adoption of DArT,
SFP and especially SNP markers, the latter providing
avenues to hundred of thousands to millions of markers
per genome. High density genetic maps are the corner-
stone of a variety of biological studies including map-
based cloning, association genetics and map-assisted
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breeding. Because they are relatively inexpensive com-
pared to whole genome sequencing, high density genetic
linkage maps are currently of great interest, in particular
for organisms with large genomes.

Traditionally scientists have focused on building ge-
netic map for a single mapping population, a task for
which a wide variety of software tools are available
and have satisfactory performance, e.g., JOINMAP [2],
CARTHAGENE [3], ANTMAP [4], RECORD [5], TMAP [6],
and our own MSTMAP [7], [8].

In recent years, the rapid adoption of high-throughput
genotyping technologies has been paralleled not only by
an increase in the map density but also by an expansion
in the variety of marker types. It is increasingly common
to find multiple genetic maps available for the same
organism, usually for different sets of genetic markers
and genotyping technologies. Notable examples are ge-
netic linkage maps based on micro-satellites in human
[9] and cattle [10], and maps based on sequence length
polymorphism in mouse [11] and rat [12]. In the case of
maize (Zea mays), seven distinct mapping populations
have been analyzed [13].

When multiple genetic maps are available, they typi-
cally share a subset of common markers. In this case, it
is often desirable to construct a bigger map (hereafter
called consensus map) that includes and is consistent
with all (or, the vast majority of) the markers in the
individual maps. A consensus map is desirable because
it provides a higher density of markers and therefore
a greater genome coverage than the individual maps.
However, building a consensus map that is consistent
with the individual maps is not always possible be-
cause genotyping errors are likely to introduce ordering
conflicts between the individual maps. Due to the way
individual genetic maps are assembled from genotyping
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data, two types of errors can be observed, namely local
reshuffles and global displacements. Local reshuffles
refer to inaccuracies in the order of nearby markers,
whereas global displacements refer to the cases where a
few markers are placed at positions far from the correct
ones. We are not the first ones to observe the presence
of global displacement errors in the individual maps.
Jackson et al. [14] observe that by removing problematic
markers (called outliers) from the individual maps, the
task of building a consensus map is greatly eased. When
addressing the conflicts in the consensus maps, however,
both types of errors need to be accounted for.

Several systematic approaches have been proposed
to construct consensus maps (see, e.g., [13]-[18]). The
method adopted by Beavis et al. [15] for the integration of
maize maps is to pool together the genotyping data from
the individual mapping populations, and then rely on
traditional mapping algorithms to build the consensus
map. This pooling strategy is commonly used, but it
has several shortcomings. First, it cannot be used in all
circumstances. For example, when the data are obtained
from different populations (e.g., one data set obtained
from a double haploid population and another from
an F5 recombinant inbred lines population), then they
cannot be merged and treated uniformly downstream.
Second, the pooling method results in a large number
of missing observations, and the percentage of miss-
ing data increases with the number of data sets to
be combined. For instance, combining two data sets
with 80% shared markers will result in 16.67% missing
observations. Combining three data sets with 80% shared
markers will increase the percentage of missing observa-
tions to 28.57%. A large amount of missing observations
combined with the limited tolerance to missing data by
existing mapping algorithms inevitably deteriorates the
quality of the consensus map.

An alternative approach, like the one used in JOIN-
MAP [16], is to first obtain the consensus estimates of
pairwise genetic distances by weighting for population
structure and size. Then, one searches for a map that
minimizes an objective function that measures the fit of
the map to the distance estimates and the overall quality
of the map. The drawbacks of this approach are twofold.
First, distance estimates are not very accurate when
based on a small sample of recombination events. Con-
struction of genetic maps based on these estimates will
result in inaccuracies in the ordering between nearby
markers. Second, the computational problem of search-
ing for an optimal map with respect to the objective func-
tion being used is very time consuming. For instance,
the most recent version of JOINMAP occupied a single
PC workstation for three months in order to construct
a consensus map from three individual maps of barley
containing about 1,800 markers (markers were divided
into seven linkage groups of roughly equal sizes). The
same job was carried out by our method in about five
minutes. The difficulties of constructing integrated maps
by JOINMAP have also been discussed at length by

Wenzl et. al. [19]. Despite these drawbacks, JOINMAP
is still the most popular software package available to
build consensus maps.

There are other less-known commercial tools like
MULTIPOINT (http://www.multiqtl.com/) or CARTE-
BLANCHE (http://www.keygene.com/). The approach
of MULTIPOINT to build consensus maps is to perform
a re-processing of the initial genotyping data rather than
merging the individual maps [17]. The problem that
MULTIPOINT needs to solve is computationally very
hard, which drastically limits the number of markers in
the maps (see [7], [8] for a discussion on the computa-
tional disadvantages of casting this problem as a version
of the Traveling Salesman Problem).

In general, the fact that most of the available tools to
build consensus maps (e.g., JOINMAP, MULTIPOINT and
CARTEBLANCHE) are proprietary commercial software
tools hinder the ability of many academic labs to carry
out this task. At the same time it limits the ability of
comparing competitive algorithmic approaches — as a
consequence, we decided to compare our method only
with JOINMAP and the pooling method [15]. We should
note here that the latest version of CARTHAGENE [3]
also offers some limited abilities of merging two genetic
maps.

The most recent approach relies on graph theory
and was initially proposed by Yap et al. [18] and later
extended by Jackson et al. [13], [14]. Yap et al. [18]
use directed acyclic graphs (DAG) to represent maps
from individual populations. The set of DAGs are then
merged into a consensus graph on the basis of their
shared vertices. A directed cycle in the resulting graph
indicates an inconsistency among the individual maps
with regard to the order of the markers involved. In
order to resolve the inconsistencies, Jackson et al. [13],
[14] proposed to break cycles by removing a minimum
weight set of feedback edges. This objective function is
reasonable when dealing with local reshuffles. However
in the presence of global relocations, it is not appropriate
because too many edges need to be deleted in order for
all the cycles to be broken. An alternative approach is
to remove a minimum weight feedback vertex set from
the graph. The obvious drawback of this method is that
markers corresponding to those deleted vertices will be
excluded from the consensus map.

Our contribution. We follow the graph theoretical
paradigm outlined in [13], [14], [18] and represent in-
dividual genetic maps as DAGs. Individual maps are
combined into a single directed graph according to
their shared vertices. Any ordering conflict among the
individual maps generates cycles in the combined graph.
Here, we propose to resolve the cycles by removing
the smallest set of (feedback) marker occurrences. We
need to emphasize that we are not deleting markers,
but marker occurrences. While a specific genetic marker
may be shared by multiple individual maps, a marker
occurrence refers to the appearance of a marker in a
particular individual map. The deletion of a marker
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occurrence will not affect the occurrences of the same
marker in other maps. Also, notice the difference be-
tween our objective function and that of [13], [14] which
tries to delete a minimum number of feedback arcs to
resolve all conflicts. Overall, the strategy of identifying
and eliminating a small number of marker occurrences
has less destructive effects when dealing with errors in
the individual maps.

Our parsimonious strategy is first cast in a combi-
natorial optimization framework via integer linear pro-
gramming, and then a polynomial-time approximation
algorithm is proposed to solve it. When the size of
the problem to be solved is too large compared to
the computing resources available, a heuristic can be
used to decompose the original problem into smaller
subproblems that can be solved independently.

Our own experience using the directed acyclic graph
approach to represent the consensus map has shown that
the resulting consensus DAGs are usually very complex
and convoluted (see Figure 1-Left for an example). In or-
der to allow geneticists to visualize and make use of the
consensus map, once all cycles in the consensus map are
resolved, we post-process the resulting directed acyclic
graph by removing redundant edges and merging nodes
without reintroducing conflicts (see Figure 1-Right for
the corresponding simplified map). The resulting simpli-
fied consensus map can be directly used by geneticists in
downstream applications. If a linear ordering is needed,
we employ another novel algorithm that produces a
linear order of the markers which is consistent with the
consensus graph.

The last two steps in our algorithmic pipeline, namely,
simplifying and linearizing the DAG, further distinguish
our approach from those in [13], [14], [18]. The final
output of our workflow is a linear order of sets of
markers which is a format geneticists are accustomed to.
The output of the methods by Yap et al. [18] and Jackson
et al. [13], [14] is instead a tangled DAG, which is often
so complex and convoluted that it may not be useful to
geneticists.

In order to assess strengths and weaknesses of our
method an extensive set of experiments both on synthetic
data and real barley genotyping data was carried out.
The evaluations were mainly concerned with comparing
our tool to JOINMAP [16] which is, to the best of our
knowledge, the most commonly used tool to build con-
sensus maps. Our approach produces consistently better
results than JOINMAP, both in terms of accuracy and
running time. Our method also outperforms the method
of pooling together genotyping data from individual
maps.

2 METHODS

Our approach consists of four sequential steps. In the
first step, the individual maps are compared with each
other to determine a consistent orientation (details in
Section 2.2). In the second step, the maps are merged and

the conflicts among the individual maps are resolved
by deleting a minimum number of marker occurrences
(see Section 2.3). In the third step, the consensus DAG
resulting from the previous step is simplified. The details
of this step are presented in Section 2.4. In the fourth last
step, the simplified DAG is “linearized” to produce the
consensus map (see Section 2.5).

21

A genetic linkage map represents the linear order and the
pairwise distance of markers on a chromosome (the latter
usually expressed in centimorgans, abbreviated as cM).
A set of markers for which no recombination is detected
is called a bin. Each pair of markers in the same bin
have their relative pairwise orders undetermined. In the
rest of the paper we will assume that a genetic map
is composed of a sequence of bins (of markers) and
the distances between them. We also assume that the
genetic distance when expressed in cMs is additive, i.e.,
the distance between bin A and bin C is the sum of
the distance between bin A and bin B and the distance
between bin B and bin C if the bins are ordered as
[A B C].

We use square brackets to delimit a genetic map and
we will use round parentheses to enclose a bin. For
example, map II = [(m1) 2 (m2,m3) 2 (m4) 1 (M5, me)]
consists of four bins, where the first and the third
bin are both singletons (i.e., contain only one marker).
Marker m; precedes both markers ms and ms, which are
followed by marker m,4. The relative order between my
and mg is undetermined. The distance between the first
bin and the second bin is 2 cM. Sometimes the distances
can be omitted if one is concerned only with the order
of the markers, e.g., [(m1) (ma2,m3) (m4) (M5, mg)].

We reserve the symbol II to denote a genetic linkage
map, and My to denote the set of markers included in II.
Given a set of maps Q = {II;, I, ..., IIx }, we define Mg
to be the universe of all the markers, i.e., Mg = UfilMHi.
Given a map II we define Gn = (M, En) to be the
directed weighted graph induced by II, where the set of
edges Er is defined as Er = {(m;, m;)| m; is in the bin
immediately preceding the bin containing m;} and the
weight of an edge (m;, m;) is set to the genetic distance
between the corresponding bins. The notion of induced
graph can be easily extended to a set of maps. We set
Gq = (Mg, Eq) as the directed weighted graph induced
by , where Eq = UX,Fp,. The weight of an edge
in Gq is set to be the average of the weights of the
corresponding edges in the original maps. _

We use m; to refer to a generic marker, and mz to
refer to the occurrence of marker m; in map II;. We
further define N, to be the set containing all the marker
occurrences. If we select a set R C Ng, a submap II(R)
of II with respect to R is obtained by deleting the
occurrences of all markers not in R from map II. The
set of sub-maps Q(R) for the original set of maps
restricted to R is defined as Q(R) = {IL;(R)|IL; € Q}.

Preliminaries and notations
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Fig. 1. A side by side comparison of a simplified DAG (Right) and an original DAG (Left) of barley chromosome 5H. In
the simplified DAG, markers are condensed into super-markers. Each super-node is represented as a single ellipse in

the figure.

Figure 2 illustrates the notations II, Q, G, G, Mg,
Ng, II(R) and Qp for a small example.

2.2 Determining the orientation of individual maps

When a map for a specific linkage group (i.e., a chromo-
some) is constructed from genotyping data, its canonical
orientation (i.e., long arm of the chromosome on top) is
usually unknown. The purpose of this step is to reverse
the orientations of a subset of the input maps in 2, so
that overall the resulting maps will be in a consistent
orientation.

We employ Kendall’s 7 statistic to determine whether
two maps are in a consistent orientation or not. Given
two maps II; and II;, Kendall’s 7 statistic is defined as

_ ,# concordant marker pairs
(I, 1) = 27500 T# of marker pairs
marker pair is said to be concordant if they are in the

same order in both maps. When computing 7(II;, IL;)
we restrict our attention to the common markers in
M, "Mm,. If 7 > 0 then the two maps are in a consistent
orientation, 7 < 0 otherwise.

In order to determine the consistent orientation, we
first construct an undirected graph H = (Q,FE) as

— 1, where a
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O = {11, 1>}

Iy = [(m2) 2 (m3,m4) 1 (ms5) 2 (me, m7)]

Iy = [(m1) 1 (ma,ms3) 2 (m5) 1 (mg, m7)]

Mgq = {m1, m2,m3, my, ms, me, mz}

Nq = {m%,m%,mi,mé,mé,m%,m%,m%,m%,mi,m%,m%}
R = {m%,mé,mi,mé,mé,m%,m%,mg,m%,mﬁ,m%}
II;(R) =11,

HQ(R) = [(ml) 1 mg,mg) 3 (m4,m7)]

(
Q(R) = {IL(R),1I2(R)}

Fig. 2. Two simple genetic linkage maps, along with the
corresponding notations used in this paper. Maps I1; and
II, both consist of four bins (enclosed in parentheses).
The numbers in between adjacent bins indicate the dis-
tances between them. Maps II; and I, are not consistent
with each other because there is a cycle in G, between
my and ms. Removing ms from 11, resolves the conflict.

follows. Each individual map in 2 is represented by a
vertex in H. Two vertices are connected by an edge if the
corresponding maps share at least ¢t markers!. An edge
is colored red if 7 for the corresponding pair is negative,
otherwise it is colored black. Without loss of generality,
we can assume that H is connected, otherwise, we can
solve each connected component of H. The problem of
determining the set of maps to be reversed is equivalent
to the problem of identifying a subset S of (2 that satisfies
the following two conditions: (1) for every red edge,
exactly one of the end vertices is in S, and (2) for every
black edge, either both of the end vertices are in S or
none of them is in S. This problem can be solved with
a relatively simple BFS-based algorithm as shown in
Algorithm 1 (Supplementary Material).

2.3 Resolving ordering conflicts

Let Q = {II;,1I,...,IIx} be the set of input maps in
a consistent orientation. The problem of merging maps
II;, Iy, ..., Ik into a consensus DAG is straightforward
when there are no conflicts. If some of the markers
in the input maps have conflicting orders, then the
induced graph Gg will not be acyclic. In order to resolve

1. The choice for ¢ depends on the quality and the size of the maps.
According to our experiments, when the number of common markers
shared by two maps exceeds 10, the 7 statistic is very reliable

cycles, we propose to delete the smallest set of marker
occurrences that can make Gq acyclic.

In order to capture the confidence associated with
specific genotyping calls, we allow weight to be assigned
to each individual marker occurrences. In practice, we
assign weights to individual maps to represent their
quality (i.e., high weight is associated with high qual-
ity /confidence). Once the weights are assigned, the com-
putational problem is to delete the minimum-weight set
of marker occurrences so that the resulting consensus
map is acyclic. Formally, the optimization problem that
emerges from this strategy is the following.

Minimum-Weight Feedback Marker Occurrence Set
(MWEMOS)
Input:  and w, where 2 is a set of individual maps
from which one would like to build a consensus
map, and w is the associated weight function on Ng
where w(m7) is the weight of marker occurrence m;.
Without loss of generality, we assume that w(m/) > 1
for all m! € Ng.
Objective: identify a set D of minimum total weight
so that the subproblem restricted to No—D is conflict-
free (i.e., the graph induced by the subproblem,
Go(ng—D), is acyclic).

It is relatively easy to prove that MWFMOS is NP-
complete when the number of maps is unbounded. The
proof is a simple reduction from the minimum feedback
edge set problem. We still do not know whether MWEF-
MOS is still NP-complete when the number of maps is
bounded by a constant, but we suspect it is.

The solution to the MWEFMOS problem with in-
put (Q,w) can be obtained by solving MWEMOS
for the non-overlapping subproblems corresponding
to the strongly connected components in Ggq. For
example, if we have Q = {[(m1) (m2) (ms) (m4)],
[(m2) (m1) (ma4) (m3)]}, there are two strongly con-
nected components in Gg. The corresponding sub-
problems are Oy = {[(m1) (m2)], [(m2) (m1)]} and Qy =
{[(m3) (m4)], [(m4) (m3)]}. The optimal solution to the
original problem is simply the concatenation of the
optimal solutions to the subproblems. In the following,
we will be focusing on solving MWEMOS for one of the
connected components of Gq.

The algorithm that we propose requires to (1) express
the problem as an Integer Linear Program (ILP), (2) relax
the ILP to a Linear Program (LP) and solve it, and (3)
use randomized rounding to convert the LP solutions
to integral solutions. In practice, it turns out that the
linear program contains too many variables (a high-
order polynomial in the the size of the input) to be easily
tractable, so we propose to solve it with linear relaxation
and rounding.

2.3.1 An LP-based algorithm

Let T = {F\,F5,...,Fr} be a subproblem of Q cor-
responding to a strongly connected component in Ggq.
A submap F; is hereafter called a fragment since it is
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a contiguous piece of an individual map from Q. Each
fragment F; has the same format as II;. Throughout this
paper, we use €} to denote the original problem, and 7
to denote a subproblem of €. _

A conflict in 7 is characterized by a path m]! — m
mi; —mis,...,mj" —mi" (not to confused with a path
in G1), wherein mfll — mle indicates that marker m,,
precedes marker m;, in fragment F};, (markers m;, and
m;, do not have to be in adjacent bins). Observe that
the path starts and ends with the same marker in two
different fragments. Let P be the set of all such paths.

Given an instance of P, we formulate MWFMOS as

an Integer Linear Program (ILP) as follows.

J1
12/

Min 3 adw(m?)
ST. Y ,iepl =1 VpeP 1)
z) €{0,1}

where 2 is the binary variable associated with the
marker occurrence m] which is set to 1 if m] needs to
be deleted, 0 otherwise. The LP relaxation of the above
ILP is straightforward.

The number of constraints of the LP relaxation of (1)
is | P|, which is at most O(K!|Mz|¥), where K is number
of fragments in 7 and |M7z| is the total number of distinct
markers in Z. The number of constraints is polynomial
when the size of the input K is constant. The dual for

the LP relaxation of (1) is the following program.

J

Max S,
ST > smiUp < w(ml) ¥Ym! € Nz (2)
Yp >0 Vpe P

where y,, is the associated variable with path p € P, and
N7 is the set containing all the marker occurrences in 7.
The following LP is equivalent to (2).

Min A
ST X smiUp < Aw(m?) ¥ml e Nz
ZpGP Yp = 1 (3)
Yp >0 VpeP

The optimal solution to (3) is the reciprocal of the
solution of (2). To simplify the notation, we can rewrite
(3) in the matrix representation.

Min A
S.T. Ay <\ 4)
=1 and ¥>0

Each row of A corresponds to a marker occurrence
in Nz and each column of A refers to a path in P. We
have A[r,c] = 1 if and only if m] € Nz corresponding to
the 7" row of A is on the path corresponding to the c'"
column of A. With y =1, we mean }_ py, = 1.

Due to the large number of variables, solving opti-
mally (4) can be very time consuming. In the following,

we show how to achieve an (1+ ¢)-optimal (or simply e-
optimal) solution?. To find such an approximate solution,
we follow the method proposed by Plotkin et al. [20].
Let Z be the dual variables associated with (4), and let
us define C(Z) = ming g1 Z*Ay.

Consider an error parameter 0 < ¢ < 1/6, a feasible
primal solution (i, ), and a feasible dual solution Z.
Then, A is 6e optimal if the following two relaxed op-
timality conditions are met

(1— )N < 2 Af (5)
FAG — O(F) < e(ZAF + \2'D) ©6)

Algorithm 1 APPROXSOLVE(p, €)

1 — go; A — max, a,. §/w,; o — 4In(2|Nz|e 1)/ (Ne);
o — ¢/(4a);
{ar is the transpose of the r*" row vector of matrix A. |Nz| is the
number of rows in A}

: forr=1,...,|Nz| do

2y eaa“rt??/wr/wr

: while (7, \, Z) does not satisfy (6) do

Y — argminmgzlz?’tAg'

j— (1 0)j+ 0¥

if max, a,.'j/w, < \/2 then
A — max, ;. J/w,; a — 4In(2|Nz|e 1)/ (Xe);
o — ¢/(4a);

9. forr=1,...,|Nz| do

10: 2y Q% T/ wr Jwy

11: X «+ max, a';tg'/wT;

12: return ¢, \, 7

P N> @R

A sketch of the algorithm to find a 6e optimal solution
is presented as Algorithm 1. Algorithm APPROXSOLVE
converges within O(—4+ log(|Nz|e™!)) iterations, where
A* is the optimal solution to (4). The performance guar-
antee of our algorithm APPROXSOLVE is formally pre-
sented as Theorem 1, and the time complexity analysis
is presented as Theorem 2.

Lemma 1: Let (7, A) and Z be feasible primal and dual
solutions that satisfy both condition (5) and (6). Then,
(7, A) is an (1 + 6e) optimal solution.

Proof: This Lemma corresponds to Lemma 2.1 in
[20]. To be self-contained, we present the proof here.
From (5) and (6), we have C(2) > (1 —¢)Z* Ay — eAZ'0 >
(1 — €)2\Z'0 — eAz'd > (1 — 3e)AZ*0. Hence, \ < (1 —
3¢)71C(2) /240 < (1 — 3e)7IA* < (14 6e)\* . M

Theorem 1: Algorithm APPROXSOLVE returns an (1 +
6¢) optimal solution to (4).
Proof: The theorem follows from Lemma 2.2 in [20].
To be self-contained, we present the proof here.
According to Lemma 1, in order to prove Theorem
1, we only have to show that condition (5) and (6)

2. A solution X is said to be (1+¢) optimal if A < (14 €)Aopt, where
Aopt is the optimal solution. An (1 4+ €) optimal solution is sometimes
simply called an e-optimal solution.
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are both satisfied when Algorithm APPROXSOLVE stops.
Since condition (6) is ensured by the while loop at line
4, we only have to show that (5) is satisfied when the
algorithm stops.

We first show that when a > ag N , Z as
assigned by the “for” loops at line 3 and 12 in algorithm
APPROXSOLVE will satisfy condition (5).

Let I = {i : (1 —¢/2) w; > a;'y}. Let j € I. We
have /\ijj — )\eaa'}tyj/wj < )\ea(lfe/Q))\ — \eOAe—aer/2 <
)\ea)\e—ln@lNIIe*l) < o ‘/\e < 2|N ‘[)\Z w] Conse-
quently, AT =37, )\zzwﬁ—z g1 AZiw; < D icr Aziwi+
Zzgﬂl €/2,216L1y < D e Aziwi + - E/Q%Ay < AP+
175/2 7t Ayj. Therefore, we have (1 — e)\Z%0 < "'tAy.

Notice that « is initialized to be 2ay and whenever
max, a}tgj Jw. < A2, a gets recomputed. Therefore
condition (5) is satisfied throughout the execution of
Algorithm APPROXSOLVE. I

Lemma 2: Let (yi,A) and 2z, where 23 =
{Lear i/ ““}WII, be primal and dual solutions
that do not satisfy (6). Let (1]2, A) and 75 be the solutions
in the next iteration, i.e., y5 = (1 — d)y1 + 0y, and let
a, § and € be defined in Algorithm APPROXSOLVE. Let
®y = 10, @y = Z"0. Then &1 — By > A2 /4.

Proof: We have ®, = Bl = Y, eo“fit?/wi
S eadit (1=8)gi+6y)/wi  _ S eaa?,tyi/wieaéa?t(y—yi)/wi'
Since w; > 1, y1 = 1 and y = 1, it follows that
|a;* @ — y1)/wi] < 1. Since § = S5, it follows that
lada;’ (7 — yl)/wz| < €/4 < 1/4. According to Taylor’s
expansion, e* < 1+ z + 2z* for |z] < 1/4. By plug-
ging in & = add@;'(j — yi)/wi we get e (y—yi)/wi <
L+ (addi’ (5 — yi)/wi) + 2(ada;' (§ — gi)/wi)® < 1+
(da;' (G — i)/ wi) + %(a(?c?f@—i— y1)/w;). Therefore, &y =
>, i i Jwi paddi (y—1i) /wi >, Qi yi /wi ad(C(z1) —
71 AyY1) + §ad0(C(21) + 71 Ayi). Consequently @y < &y +
ad(C(21) — 21 Ayi) + $ad(C(21) + z1 Ayi). It follows that
Dy — Dy > ad(71Ayn — C(21)) — eadzi Ayi. Due to the
fact that (yi,A) and 77 do not satisty (6), we have
Dy — By > Aeadz'd. According to the choice of 9, we
have P, — Py > )\62(131/4. M

_ 2In(2|Nzle™h)

Theorem 2: Algorithm APPROXSOLVE converges in
O(=5= log(|Nzle™h)) iterations, where A* is the optimal
solutlon to (4).

Proof: Notice that during the execution of Algo-
rithm APPROXSOLVE, A is a monotonically decreasing
sequence with A\; > 2X;y;. Let the sequence of A be
A0s A1, A2, ..., Ap, where A, > A* is the final output.
When \ = )\, then e®*/2 < & < |Nz|e®*.

Due to Lemma 2, it takes at most O( 55~ log(|Nz|e™!))
iterations to cut A from Ay to Agy1. Since A\; > 2A;41, the
overall time complexity is determined by the last step.
Hence the overall running time is O(=5= log(|[Nz|e™?)).

U

Step 5 in algorithm APPROXSOLVE can be solved by
running all-pairs shortest path algorithm, which takes
time O(|Nz|?log|Nz|). The vector § does not have to

be stored in memory explicitly since all we need is Ay
which takes space O(|Nz|). Combining the running time
for each iteration with the upper bound on the number of
iterations, the overall time complexity of APPROXSOLVE
is O(=5= log(|Nz|e™!)|Nz|?log | Nz|). Note that the time
complexity does not depend on |P)|.

Given the near optimal solution Zz' to the dual of
(4), the near optimal solution to the LP relaxation of
(1) is & « Z/C(Z). In our algorithm we apply two
types of rounding to convert the fractional solution &
to an integral solution, and then choose the best. The
first method is randomized. The randomized rounding
algorithm progressively deletes marker occurrences until
all the conflicts are resolved. In each step, the method
samples a marker to be deleted according to a probability
distribution proportional to Z. The solution obtained
is further reduced to a minimal solution by removing
redundant marker occurrences. The second rounding
method employs a greedy strategy. The markers occur-
rences in N7 are sorted into descending order according
to their associated probabilities, then we delete just
enough marker occurrences to resolve all the conflicts.
Again, the solution is further reduced to a minimal
solution by removing redundancies. The pseudocode for
the rounding step is presented as Algorithm 2 (Supple-
mentary Material).

As suggested by one of the anonymous reviewers, it
may be possible to find an exact solution to the ILP (1)
by designing a combinatorial algorithm that solves the
separation problem on the path inequalities. While we
have not explored this approach yet, it has the potential
to lead to a comparatively fast method that finds truly
exact solutions.

2.3.2 A speed-up heuristic

Our LP-based algorithm works well when either the size
of the subproblem is small (i.e., |Nz| is small) or the
number of markers to be deleted is small (i.e., 1/\x is
small), the latter of which is usually the case in practice.
However if both |Nz| and 1/« are large, the LP-based
algorithm can be still too slow. In this case, we advise
to employ an heuristic algorithm which breaks a large
subproblem 7 into even smaller sub-subproblems.

Our heuristic algorithm uses the notion of node be-
tweenness [21]. Recall that the betweenness centrality of
a node in a graph is equal to the number of shortest
paths that go through it. The intuition is that nodes with
high betweenness usually correspond to hubs, and their
deletion will likely break the graph into disconnected
components.

Now let m]' and mJ* be a pair of occurrences of the
same marker in two individual maps. A path between
m]' and m]* is the shortest if it traverses the smallest
number of marker occurrences. Let ) be the set of
all such pairwise shortest paths. If there are multiple
shortest paths between a pair, we arbitrarily choose one
to be included in Q. Observe that @ is a subset of P in
the ILP (1).

J1
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We define the weighted betweenness centrality of a
marker occurrence m; as the number of shortest paths
in @ that go through node m; divided by its weight
w(m?). The higher the weighted betweenness centrality
for a marker occurrence, the higher is the likelihood
that marker occurrence should be deleted. Our heuristic
algorithm works by computing the weighted between-
ness centrality for every marker occurrences and then
iteratively deleting the ones with the highest value. The
step is repeated until the sizes of the sub-problems are all
small enough to be handled by our LP-based algorithm.
The pseudo-code of our heuristic algorithm is presented
as Algorithm 3 (Supplementary Material).

2.4 Simplifying the consensus map

Having resolved the conflicts in €, the graph Gy, is now
acyclic. As it turns out in practice however, the graph
Gq is overly complex to be useful for geneticists. In this
phase, we propose two effective simplification steps. The
first one addresses the problem of reducing the number
of nodes, whereas the second focuses on decreasing the
number of edges.

Recall that a bin represents a set of markers for which
the relative orders are undetermined. In this first step,
we aim to simplify G by condensing markers into
bins. In order to differentiate the bins constructed in
this step from the bins in the original maps, we refer
to the former ones as super-markers. The rationale for
combining markers into super-markers is the following.
If two markers always appear paired in the same bin
in the original individual maps, then we cannot de-
termine the relative order between them and the two
markers should be grouped as a single super-marker.
Based on this observation, we generalize the notion of
co-segregating markers as follows. Given a set of maps
QO ={II, I, ..., Ik}, two markers (m;, m;) are said to
be co-segregating (denoted as m; ~ m;) if they satisfy
the following two conditions (A) m; and m; belong to
the same bin in at least one of the maps in (2, and (B)
there is no path from m; to m; or from m; to m; in
Gq. The first condition is intended to ensure that the
markers to be condensed into a super-marker are indeed
close. The second condition makes sure that the relative
order between the markers to be condensed into a super-
marker is undetermined.

The co-segregation relation is not an equivalent rela-
tion, because it does not satisfy the transitivity property.
Consider, for example, Q = {[(m1, m2, m3)], [(m1) (m4)],
[(m4) (m3)]}, then my ~ mg, and may ~ m3, but my £ mg
since there is a path from m; to ms in Go. When we
group markers into super-markers, we must be careful
not to introduce new conflicts. For example, consider
Q = {[(m1,m2)],[(m1) (m3)], [(ms,ma)], [(ma) (m2)]},
then (mi,m2) and (mgs,m4) are both co-segregating
pairs. But if they are both condensed into super-markers,
a new conflict will result.

In order to address these issues, we employ a
greedy iterative algorithm to carry out a maximal

decomposition of the markers into super-markers. In
each step, we condense one pair of co-segregating
markers into a super-marker. The original problem
Q0 is transformed into a new problem €, which
has one less marker than . For example, if we
have Q = {[(mi,m2,m3)],[(m1) (m3)]}, after con-
densing the co-segregating pair (mi,m2) into super-
marker mg, the original problem becomes ' =
{[(ms,m3)], [(ms) (m3)]}. We keep repeating the iter-
ative process until no co-segregating markers can be
found. The final set of maps at the end of the process
are denoted by O/ (Gg is the corresponding induced
DAG).

In the second simplification step, we concentrate on
reducing the number of edges from Ggs. We define a
directed edge (m;,m;) to be redundant if there exists an
alternative (distinct) path from m; to m; in Ggq. The
removal of redundant edges is a transitive reduction
[22], which is commonly used to untangle a graph. We
denote with DAGq, the final graph obtained by removing
redundant edges.

Each vertex in DAGq represents a super-marker in
Q/, which in turn represents a set of markers from the
original problem Q. In Theorem 3, we prove that the in-
degree and out-degree of the vertices in DAGq are at
most K, where K is the number of maps. The entire
simplification process is summarized in Algorithm 4
(Supplementary Material).

Figure 1 illustrates a side-by-side comparison between
the original DAG and the corresponding simplified DAG
for barley chromosome 5H. Observe that the original
DAG is much more complex and tangled than the sim-
plified DAG. The major benefit of this last step is that
the simplified DAG can be used directly by geneticists
and represents a viable alternative to the classical linear
order representation for genetic maps.

Theorem 3: The in-degree and out-degree of the ver-
tices in DAGq are at most K, where K is the number of
maps.

Proof: Let II/ € Q/ be one of the final individual
maps. Let Mys be the set of super-markers contained in
II/. Consider any two super-markers m; and m; from
M. If m; and m; belong to different bins in II/, then
m; and m; are ordered (meaning either m, is before m;
or vice versa). On the other-hand, if m; and m; belong
to the same bin, since m; and m; do not form a co-
segregating pair (due to the greediness of our algorithm),
there must be a path from either m; to m; or from m
to m; in DAGq. Therefore, if we restrict our attention to
a single map IIY € Qf, DAGq, defines a total order on
the set of super-markers M. As a result, each super-
marker can have at most one immediate predecessor and
one immediate successor from one individual map. Since
each super-marker can appear in at most K maps, the
theorem follows. I
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2.5 Linearizing the consensus map

In the fourth and last step of the workflow, we process
DAGgq to produce a linear order of the bins (super-
markers). The objective is to compute the linear order
that is consistent with the partial order of the bins, i.e.,
if there is a path from bin b; to bin b; in DAGq, then
b; should precede b; in the linear order. This problem
is similar to topological sorting [23], but the genetic
distances need to be taken into account as well. Also,
when there is no path between a pair of bins, we have to
impute the order of the two bins as well as the distance
between them.

R ¥

case 1 case 2 case 3 case 4

Fig. 3. A few cases to consider when estimating the
distance between b2 and b3

The main idea in our linearization procedure can be
explained on the examples in Figure 3. First, consider
case 1, where there is no path between by and b3, but
they share a common ancestor. The distances from b,
and b3 to the common ancestor are 1 and 2 respectively.
In this case, it is reasonable to infer that b5 follows by and
the distance between them is 1. For the same reason, in
case 2 it is reasonable to infer that the linear order is
[b3, b2, ba]. In case 3, the situation is more complex. If we
order by and b3 by only relying on their distances from
b1, then b3 should be after b,. However, if we order by
and b3 based on their distances to b4, then b3 should be
ordered before b,. To resolve this problem, we order b,
and b3 based on the information from the pair b; and
bs. The average distance from b; and b4 over the two
paths is 4. Bin b, lies between b; and b4 and is 1/3 away
from b,. Similarly, b3 is 2/5 away from b;. Based on
that information, we order b3 after by and we set the
distance from bs to bs to be (2/5 — 1/3)4 = 4/15. In
case 4, the situation is even more complicated. When
estimating the order and distance between by and b3,
we need to aggregate the distance information from all
common ancestor and successor pairs.

This strategy can be formalized as follows. Let us
define D[b;,b;] to be the distance from bin b; to bin b;
in DAGq. If there is only one path from b; to b;, then
D[b;,b;] is trivially assigned the length of that path. If
there are multiple paths from b; to b;, we set D[b;, b;] to
be the average length of all paths from b; to b;, which
can be efficiently computed by dynamic programming as
shown in Algorithm 5 (Supplementary Material). Now,
let b; and b; be two bins that are not ordered in DAGq,.
Our algorithm determines the relative order between b;

and b; as follows. Consider these cases.

e Both b; and b; have common ancestors and com-
mon successors. Let A be the set of common an-
cestors and S be the set of common successors.
Let p € A be one of the ancestors and s € S
be one of the successors. We define the distance
from bin b; to bin b; with respect to the common
ancestor and successor pair (p,s) as AP*)[b; b;] =

D[ ;b] D ,bi, . .
Dip, s] (D[p,bj]iﬁ[bjys] - D[p,bi][iD][bi,s])‘ The final dis-

tance Alb;,b;] is averaged over all (p,s) pairs, ie.,
Albi bj] = X e a ses APV b, b;1/ (|A|S])- I Albi, b)]
is positive, then we order b; before b;. Otherwise, we
order b; before b;.

e Both b; and b; have only common successors. Let
S be the set of successors and let s € S be one of
the successor. The distance from bin b; to bin b; with
respect to s is defined as A®[b;, b;] = DIb;, s]—DIby, s].
The final distance A[b;, b;] is again averaged over all

- L A lbib)
successors, i.e., A[b;, b;] = == -

e Both b, and b; have only common ancestors.
D[b;,b;] is similarly computed as in the previous
case.

Once the distances in D are computed, the algorithm
that linearizes DAGq is similar to topological sorting
[23]. Let T be the list of ordered bins (7" = () initially). At
each iteration, our algorithm determines the next marker
s to be ordered. If s is uniquely determined under the
partial order given by DAGq, then we simply append
s to the end of T'. Otherwise, if S is the set of multiple
choices, s is chosen so that ), Stts A is maximized.
The details are presented as Algorithm 6 (Supplementary
Material).

3 RESULTS AND DISCUSSIONS

We  implemented our algorithmic  workflow
in C++ and carried out extensive evaluations
on both real and synthetic data sets. Our

software tool, called MERGEMAP, is available at
http:/ /www.cs.ucr.edu/~yonghui/mgmap.html.

31

The purpose of this first set of experiments is to assess
the effectiveness and efficiency of our conflict-resolution
algorithm. Each data set in this experiment consists of six
individual maps, all of which are noisy variants of one
single true map. The true map is just a permutation of m
markers, where the parameter m ranges from 100 to 500
(representing a spectrum of maps from medium size to
large size). The distances between adjacent markers are
fixed to be 1 cM. To generate an individual map from
the true map, we first swap n randomly chosen adjacent
pairs, and then we relocate v randomly chosen markers
to a random position. The 1 swaps model local reshuffles
while the v relocations model global displacements. As
said before, swaps and relocations are the two types

Evaluating the conflict-resolution algorithm
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of errors that may be present in a genetic map. In our
experiments, 1 ranges from 10 to 30 and v ranges from
2 to 6.

For each data set, a consensus map was constructed by
MERGEMAP by running the conflict resolution module,
followed by the simplification and the final linearization.
The consensus map was compared with the true map
and the number of erroneous marker pairs were counted.
We called a pair of markers erroneous when their order
in consensus map differs from the order in the true
map. When the consensus map is identical to the true
map, the number of erroneous marker pairs is zero. On
the other hand, when the consensus map is the reverse
of the true map, the number of erroneous markers is
equal to m(m — 1)/2. For each choice of m, n and ~,
ten independent random data sets were generated. For
each data set, the number of erroneous marker pairs
and the running time were collected. The mean and
standard deviation for both performance measures were
computed, and are summarized in Figure 4.

As Figure 4 illustrates, MERGEMAP is very accurate in
detecting the problematic markers and removing them
before merging the individual maps. In most cases, the
number of erroneous marker pairs in the final map is
less than ten, and in a few cases the number of erroneous
pairs is equal to zero. As 7 and ~ increase, the problem
becomes harder and the quality of the consensus map
deteriorates. Vice versa, as m increases the number of
erroneous pairs decreases’.

The running time of MERGEMAP increases as m or 7
or « increase, but in most practical instances it remains
within reasonable bounds. For the largest data set with
m = 500 markers, n = 30 and v = 6, MERGEMAP finishes
within 2-3 hours. In comparison, JOINMAP takes several
weeks to assemble maps with about 300 markers.

3.2 Comparing with JOINMAP on synthetic genotyp-
ing data

The objective of the second set of experiments is to
evaluate the entire process of building consensus maps
from “scratch” (i.e., starting from synthetic genotyping
data). The synthetic genotyping data sets were gener-
ated according to a procedure which is controlled by
six parameters. We attempted to model the genotyping
process to be as realistic as possible. The parameters are
the number K of mapping populations, the number m
of markers, the number R of “bad markers” on each
mapping populations, the genotyping error rate n and
the missing rate 7. The sixth parameter x controls the
percentage of the markers shared by two individual
maps. The latter is used to model the fact that the

3. The only outlier in Figure 4 is the case m = 300, n = 20 and
v = 6. We examined the raw data, and found that the high mean
and standard deviation is due to one single data set, for which our
algorithm failed to place one single marker in the right place. This
single bad marker contributed 172 erroneous marker pairs in total.
When averaged over the ten runs, the single bad marker contributed
17 to the average number of erroneous pairs.

data for individual maps only represent a subset of the
universe of genetic markers.

The entire procedure to generate a synthetic genotyp-
ing data set can be divided into four steps. In the first
step, a “skeleton” map is produced with m markers. The
markers on the skeleton map are spaced at a distance of
0.5 cM plus a random distance according to a Poisson
process with a mean of 2 cM. The “skeleton” map serves
the role of the true map.

Following the generation of the skeleton map, in the
second step the raw genotyping data for the X mapping
populations are then generated sequentially. Here we
assume that the mapping populations are all of the DH
(double haploid) type, and that each population consists
of 100 individuals. The genotypes for the individuals are
generated as follows. The genotype at the first marker
is generated at random with probability 0.5 of being
A and probability 0.5 of being B. The genotype at the
next marker depends upon the genotype at the previous
marker and the distance between them on the skeleton
map. If the distance between the current marker and the
previous marker is d cM, then with probability d/100,
the genotype at the current locus will be the opposite
of the one at the previous locus, and with probability
1 —(d/100) the two genotypes will be the same. Finally,
according to the specified error rate and missing rate,
the genotype state is flipped to model the introduction
of a genotyping error or is simply deleted to model a
missing observation.

In the third step, “bad markers” are added to each
mapping population. To do so, R markers are first
selected at random from each population. The genotypes
for those chosen markers across all the 100 individuals
are flipped with probability 0.3. Due to the very high
error rate introduced for these markers, their positions
in the individual genetic maps will be unpredictable.
We note that R is small relative to m, and therefore
the probability that two individual populations share a
common bad marker is very small. When they do, we
discard the entire data set and generate a new one.

The fourth step of generation procedure involves re-
moving a fraction of markers from each individual map.
A random subset of (1 — z)m markers is deleted from
each mapping population, where z varies from 0.35
to 0.7 in our experiments. As a result, two mapping
populations share z*m markers on average.

For each data set, individual genetic maps were
assembled by our tool MSTMAP [7], [8] with error-
correction disabled. The individual maps were then fed
into MERGEMAP to build the consensus map. We de-
note this approach of building the consensus maps as
MSTMAP+MERGEMAP.

Here we  compare the  performance  of
MSTMAP+MERGEMAP against JOINMAP. To the
best of our knowledge, JOINMAP is the most popular
tool for building consensus map among geneticists.
However, due to the fact that JOINMAP is GUI-based
(non-scriptable) and becomes extremely slow when the
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Fig. 4. The number of erroneous marker pairs obtained with MERGEMAP (TOP) and the average running time (Bottom)
for various choices of m, n and ~. The parameter m is the number of markers in each individual map. The n swaps
model local reshuffles while the ~ relocations model global displacements. Each point in the figure is an average of the
results obtained from ten independent data sets. Standard deviation for the corresponding statistic are represented as

the error bars.

number of markers exceeds 150, we collected results
for only a few relatively small data sets. As mentioned
in the introduction, an alternative approach to the
problem of constructing consensus maps is to pool the
genotype data for all the individual populations and
then apply any existing genetic mapping algorithms
by treating the pooled data set as a single population.
When pooling individual data sets, a large number of
missing observations have to be introduced. According
to this strategy, we constructed a consensus map with
MSTMAP by first combining the raw mapping data
from multiple populations into a pooled data set. We
call this latter approach MSTMAP-C.

We considered two parameter sets, which we believed
to be realistic. In the first, the parameters are m = 100,
K =62 =07 1=0001,~ =000l ,and R = 0.
In the second, we set R = 2 and left the rest of the
parameters untouched. For each choice of the param-
eters, ten random data sets were generated, and the
number of erroneous marker pairs and the running time
was recorded. The results for the two parameters set are
presented in Figure 5.

Figure 5-BOTTOM shows that MSTMAP+MERGEMAP
is orders of magnitude faster than JOINMAP (the y-axis
is in log-scale). The difference in running time becomes
more apparent when m is large. Also observe that
MSTMAP-C can be faster than MSTMAP+MERGEMAP.
Figure 5-TOP shows that (1) the consensus maps ob-
tained by MSTMAP+MERGEMAP are significantly more
accurate than the ones produced by JOINMAP or
MSTMAP-C and that (2) MSTMAP-C have comparable
accuracy to JOINMAP. We believe that the same conclu-

sions can be derived for larger data sets.

In order to investigate the extent of the advan-
tages brought upon by MERGEMAP we performed
an extensive comparison between MSTMAP-C and
MSTMAP+MERGEMAP for a variety of parameter set-
tings. For example, Table 1 summarizes the results for
K = 6,2 = 0.7. For this choice of parameters, it is clear
that MSTMAP+MERGEMAP outperforms MSTMAP-C for
each choice of the parameters. The running time for
MSTMAP+MERGEMAP is comparable with those pre-
sented in Figure 4, whereas the running time for
MSTMAP-C is always very short, within a few minutes
regardless of the size of the input. Similar results were
obtained for the cases where K =8, K = 10 and K = 12
(see Tables 2, 3, and 4).

3.3 Comparing with JoinMap on real genotyping
data

The real genotyping data was obtained in the con-
text of an ongoing mapping project for the genome
of Hordeum wvulgare (barley). In total we had three
mapping populations under study, all of which are
DH populations. The first mapping population (called
OWB hereafter) is the result of crossing Oregon Wolfe
Barley Dominant with Oregon Wolfe Barley Reces-
sive (see http:/ /barleyworld.org/oregonwolfe.php). The
OWB data set consists of 1,020 markers genotyped on 93
individuals. The second mapping population (called SM
hereafter) is the result of a cross of Steptoe with Morex
(see http://wheat.pw.usda.gov/ggpages/SxM/), which
consists of 800 markers genotyped on 149 individuals.
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Fig. 6. A portion of the graph produced by MERGEMAP highlighting the conflicts among the OWB, SM and MB map
that emerged while building the consensus map for chromosome 1H of barley. Each individual map is framed in a
shaded block, nodes correspond to marker, and the numbers on the edges indicate genetic distances. Markers at the
same horizontal level belong to the same bin. The numbers enclosed in the parentheses inside the nodes are the
probabilities of deletion computed by our algorithm. Each node is filled with a color whose saturation is proportional to
the associated probability, which allows the user to quickly spot the problematic markers. The integral solution obtained
by the rounding step would delete the marker occurrence enclosed in diamonds.

The third mapping population (called MB hereafter)
is the result of a cross of Morex with Barke *. The
MB mapping population contains 1,068 markers on 93
individuals. The three data sets as a whole provide
a coverage of 1853 markers in total. The genotyping
data was collected using the Illumina GoldenGate Assay
platform.

The individual genetic maps for the three mapping
populations of barley were assembled with MSTMAP
[7], [8]. Each individual genetic map contains seven link-
age groups corresponding to the seven chromosomes of
barley, which are conventionally named 1H-7H. A con-
sensus map was built with MERGEMAP from the OWB,
SM and MB maps of each of the seven chromosomes.
We observed no conflicts among the three input maps
for chromosomes 2H, 3H, 4H, 6H and 7H. However, the
consensus maps for chromosome 1H and 5H generated

4. This latter cross was recently developed by Nils Stein and col-
leagues at the Leibniz Institute of Plant Genetics and Crop Plant
Research (IPK).

conflicts involving a large number of markers.

MERGEMAP is able to produce a graphical view of the
conflicts among the individual maps. By solving the LP
relaxation of the linear integer program (1), MERGEMAP
associates a probability with every marker occurrence.
The higher the probability, the more likely that the
marker occurrence is responsible for the conflicts. By
inspecting the graph produced for 1H (the portion of the
graph that highlights the conflicts is shown in Figure 6),
it was clear to us that marker 2_1068 was the one causing
the conflict. It turned out that marker 2_1068 was placed
at the telomere in the MB map while in the SM map
it was placed somewhere in the middle of the chro-
mosome. Observe that removing marker 2_1068 from
either the MB map or the SM map would have resolved
all the conflicts, therefore both marker occurrences are
correctly associated with a probability of 0.5 for deletion.
Following this analysis, we revisited the raw genotype
data for marker 2 1068, and noticed that the quality
of the genotype call in the MB population was quite
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Fig. 5. Comparison between MSTMAP+MERGEMAP,
JOINMAP and MSTMAP-C in terms of number of erro-
neous marker pairs (TOP) and running time (BOTTOM)
for R = 0 and R = 2 respectively. The rest of the
parameters are as shown in the title of the figures. The
parameter ~ is the missing observation rate, n is the
genotyping error rate, R is the number of “bad” markers,
and m is the number of markers in each individual map. In
these experiments we have K = 6 mapping populations
obtained by removing a fraction x = 0.7 of markers from
each individual map. Each bar represents an average of
ten runs and the error bar indicates the standard deviation

low. We deleted marker 2_1068 in the MB map and re-
built the consensus map for chromosome 1H, this time
observing no conflicts among the individual maps.

Similarly in chromosome 5H, the algorithm identified
marker 2_0029 as problematic by assigning it a high
probability for deletion. When we revisited the Illumina
GoldenGate Assay workspace we confirmed that marker
2 0029 was a low quality call in the MB map. After
deleting marker 2_0029 from the MB map, the consensus
map for chromosome 5H was conflict free.

While we were implementing our algorithms and
developing our map integration software, we were also
processing the same barley data set with JOINMAP on
a 3.3 GHz Pentium processor workstation with 2 GB
memory. JOINMAP finished merging the seven linkage
groups after about 3 months of uninterrupted execution.
The same job was carried out in less than 5 minutes
by MERGEMAP. When we compared the consensus map
generated by JOINMAP to the original individual maps,

TABLE 1
Comparison between MSTMAP+MERGEMAP and
MSTMAP-C for K = 6,2 = 0.7

MSTMAP+MERGEMAP MSTMAP-C
# erroneous pairs # erroneous pairs

v=mn— | 0.001 0.005 0.0 0.02 [ 0.001 0.005 0.01 0.02
R=0

m = 100 36 100 163 179 | 115 151 180 21.0

m = 300 13.7 254 344 486 | 294 291 421 59.2

m = 500 209 430 56.0 869 | 422 562 743 993
R=2

m = 100 32 84 134 185 | 153 385 329 340

m = 300 11.0 27.6 372 558 | 369 453 487 649

m = 500 196 450 62.8 816 | 541 68.8 841 120.1
R=4

m = 100 33 120 106 164 | 244 321 370 441

m = 300 123 238 362 50.7 | 39.3 546 638 69.0

m = 500 184 468 612 768 | 59.0 752 89.2 1209
R=6

m = 100 41 82 102 177 | 258 244 364 494

m = 300 9.6 221 313 464 | 409 524 646 782

m = 500 162 433 569 776 | 59.6 735 889 1252

Each number in the table is the average of number of erroneous

pairs obtained from ten independent runs. The parameter v is

the missing observation rate, 7 is the genotyping error rate, R is

the number of “bad” markers, and m is the number of markers

in each individual map. In these experiments we have K = 6

mapping populations obtained by removing a fraction = 0.7

of markers from each individual map.

TABLE 2
Comparison between MSTMAP+MERGEMAP and
MSTMAP-C for for K = 8,2 = 0.5
MSTMAP+MERGEMAP MSTmaP-C
# erroneous pairs # erroneous pairs

v=mn— | 0.001 0.005 0.01 0.02 | 0.001 0.005 0.01 0.02
R=0

m = 100 84 129 173 214 33.8 460 406 494

m = 300 205 375 427 734 | 1131 111.0 1242 140.1

m = 500 287 630 87.0 110.0 | 173.3 160.6 179.4 229.0
R=2

m = 100 74 133 177 224 428 431 481 677

m = 300 231 349 546 76.6 | 101.7 1019 1252 1522

m = 500 317 634 89.1 109.1 | 167.0 178.1 238.7 255.8
R=4

m = 100 63 163 169 203 529 685 594 614

m = 300 192 38.0 51.8 81.1 | 127.2 108.7 123.6 145.7

m = 500 314 631 768 111.2 | 153.6 195.7 209.8 249.2
R=6

m = 100 63 122 135 226 488 574 620 63.0

m = 300 452 415 454 63.0 | 1200 1525 130.1 167.1

m = 500 362 654 71.7 125.6 | 181.0 233.1 181.0 246.8

Please refer to the caption of Table 1 for explanations of the
notations used in the table.

in 174 places the consensus maps were not consistent
with the marker order in the individual maps. In con-
trast, after the removal of the two problematic mark-
ers, the consensus maps by MSTMAP+MERGEMAP were
100% consistent with the individual maps. According to
this observation, we can conclude that the consensus
maps generated by MERGEMAP are significantly more
reliable than the one generated by JOINMAP.
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TABLE 3
Comparison between MSTMAP+MERGEMAP and
MSTMAP-C for K = 10,2 =04

MSTMAP+MERGEMAP MSTMAP-C
# erroneous pairs # erroneous pairs
y=mn— | 0.001 0.005 0.01 0.02 [ 0.001 0.005 0.01 0.02
R=0
m = 100 103 159 21.1 296 549 843 587 705
m = 300 304 494 616 786 | 1750 1649 191.5 231.3
m = 500 50.3 777 977 130.8 | 301.1 324.5 334.8 414.1
R=2
m = 100 76 137 221 318 758 685 945 895
m = 300 28.1 480 66.1 79.6 | 186.1 176.7 199.4 265.6
m = 500 45.6 729 973 1429 | 3416 2948 373.3 366.8
R=4
m = 100 11.6 121 20.0 299 56.7 829 979 939
m = 300 25,5 536 576 935 | 2075 193.8 2354 214.4
m = 500 46.3 815 933 138.8 | 2832 353.4 375.7 412.5
R=6
m = 100 119 173 16.7 218 959 782 89.7 114.6
m = 300 278 504 570 831 | 1946 193.6 182.2 234.1
m = 500 443 821 972 136.4 | 331.0 302.4 303.0 475.6
Please refer to the caption of Table 1 for explanations of the
notations used in the table.
TABLE 4
Comparison between MSTMAP+MERGEMAP and
MSTMAP-C for K = 12,2 = 0.35
MSTMAP+MERGEMAP MSTMmAP-C
# erroneous pairs # erroneous pairs
y=mn— | 0.001 0.005 0.01 0.02 | 0.001 0.005 0.01 0.02
R=0
m = 100 85 149 195 319 976 829 742 970
m = 300 320 462 607 852 | 221.7 3109 2847 245.1
m = 500 554 837 1057 134.1 | 361.4 848.0 442.8 466.2
R=
m = 100 134 193 224 310 79.0 882 820 110.0
m = 300 319 500 67.0 1027 | 204.6 2543 257.7 291.2
m = 500 554 869 108.7 138.0 | 365.6 407.5 731.6 480.2
R=4
m = 100 146 159 210 288 96.7 749 88.6 129.3
m = 300 336 511 641 869 | 2184 2274 2547 3049
m = 500 56.8 86.6 1163 142.0 | 376.9 392.8 392.3 475.1
R=6
m = 100 126 156 233 277 824 1164 70.8 1402
m = 300 325 476 1204 809 | 251.0 234.1 2649 3478
m = 500 55.7 743 101.3 134.0 | 381.2 366.6 416.7 399.5
Please refer to the caption of Table 1 for explanations of the
notations used in the table.
ACKNOWLEDGMENTS

This project was supported in part by NSF CAREER IIS-
0447773, NSF DBI-0321756 and USDA CSREES Barley-
CAP (visit http:/ /barleycap.org/ for more informations
on this project).

REFERENCES

[1] A.H. Sturtevant, “The linear arrangement of six sex-linked factors
in drosophila, as shown by their mode of association,” Journal of
Experimental Zoology, vol. 14, pp. 43-59, 1913.

[2] J.Jansen, A.G. de Jong, and J. W. van Ooijen, “Constructing dense
genetic linkage maps,” Theor Appl Genet, vol. 102, pp. 1113-1122,
2001.

[3] T.Schiex and C. Gaspin, “"CARTHAGENE: Constructing and join-
ing maximum likelihood genetic maps.,” in Proceeding of ISMB,
pp. 258-267, 1997.

(4]

(5]

(6]

(7]

(8]

Bl

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]
[22]

(23]

H. Iwata and S. Ninomiya, “AntMap: constructing genetic link-
age maps using an ant colony optimization algorithm,” Breeding
Science, vol. 56, pp. 371-377, 2006.

H. V. Os, P. Stam, R. G. E. Visser, and H. J. V. Eck, “RECORD: a
novel method for ordering loci on a genetic linkage map,” Theor
Appl Genet, vol. 112, pp. 3040, 2005.

D. A. Cartwright, M. Troggio, R. Velasco, and A. Gutin, “Genetic
mapping in the presence of genotyping errors,” Genetics, vol. 174,
pp. 2521-2527, 2007.

Y. Wu, P. R. Bhat, T. J. Close, and S. Lonardi, “Efficient and
accurate construction of genetic linkage maps from noisy and
missing genotyping,” in Proceeding of WABI, pp. 395406, 2007.
Y. Wu, P. R. Bhat, T. J. Close, and S. Lonardi, “Efficient and
accurate construction of genetic linkage maps from the minimum
spanning tree of a graph,” PLoS Genetics, vol. 4, p. €1000212, Oct
2008.

C. Dib, S. Faure, C. Fizames, D. Samson, N. Drouot, A. Vignal,
P. Millasseau, S. Marg, J. Kazan, E. Seboun, M. Lathrop, G. Gyapay,
J. Morissette, and J. Weissenbach, “A comprehensive genetic map
of the human genome based on 5,264 microsatellites,” Nature,
vol. 380, pp. 152-154, 1996.

N. Thara, A. Takasuga, K. Mizoshita, H. Takeda, M. Sugimoto,
Y. Mizoguchi, T. Hirano, T. Itoh, T. Watanabe, K. M. Reed,
W. M. Snelling, S. M. Kappes, C. W. Beattie, G. L. Bennett, and
Y. Sugimoto, “A comprehensive genetic map of the cattle genome
based on 3802 microsatellites,” Genome Research, vol. 14, pp. 1987-
1998, 2004.

W. E. Dietrich, J. C. Miller, R. G. Steen, M. Merchant, D. Damron,
R. Nahf, A. Gross, D. C. Joyce, M. Wessel, R. D. Dredge, A. Mar-
quis, L. D. Stein, N. Goodman, D. C. Page, and E. S. Lander,
“A genetic map of the mouse with 4,006 simple sequence length
polymorphisms,” Nature Genetics, vol. 7, no. 2S, pp. 220-245, 1994.
R. G. Steen, A. E. Kwitek-Black, C. Glenn, J. Gullings-Handley,
W. Van Etten, O. S. Atkinson, D. Appel, S. Twigger, M. Muir,
T. Mull, M. Granados, M. Kissebah, K. Russo, R. Crane, M. Popp,
M. Peden, T. Matise, D. M. Brown, J. Lu, S. Kingsmore, P. J. Tonel-
lato, S. Rozen, D. Slonim, P. Young, M. Knoblauch, A. Provoost,
D. Ganten, S. D. Colman, J. Rothberg, E. S. Lander, and H. J.
Jacob, “A high-density integrated genetic linkage and radiation
hybrid map of the laboratory rat,” Genome Research, vol. 9, no. 6,
pp. AP1-8, 1999.

B. N. Jackson, S. Aluru, and P. S. Schnable, “Consensus genetic
maps: A graph theoretic approach,” in Proceeding of CSB, pp. 35—
43, 2005.

B. N. Jackson, P. S. Schnable, and S. Aluru, “Consensus genetic
maps as median orders from inconsistent sources,” IEEE/ACM
Trans. Comput. Biol. Bioinformatics, vol. 5, no. 2, pp. 161-171, 2008.
W. D. Beavis and D. Grant, “A linkage map based on information
from four fo populations of maize (Zea mays L.),” Theor Appl
Genet, vol. 82, pp. 636-644, Oct 1991.

P. Stam, “Construction of integrated genetic linkage maps by
means of a new computer package: Joinmap,” The Plant Journal,
vol. 3, pp. 739-744, 1993.

D. L. Mester, Y. I. Ronin, M. A. Korostishevsky, V. L. Pikus, A. E.
Glazman, and A. B. Korol, “Multilocus consensus genetic maps
(mcgm): Formulation, algorithms, and results,” Computational Bi-
ology and Chemistry, vol. 30, no. 1, pp. 12-20, 2006.

L. V. Yap, D. Schneider, J. Kleinberg, D. Matthews, S. Cartinhour,
and S. R. McCouch, “A graph-theoretic approach to comparing
and integrating genetic, physical and sequence-based maps,”
Genetics, vol. 165, pp. 2235-2247, Dec 2003.

P. Wenzl, H. Lj, ]. Carling, M. Zhou, H. Raman, E. Paul, P. Hearn-
den, C. Maier, L. Xia, V. Caig, J]. Ovesn, M. Cakir, D. Poulsen,
J. Wang, R. Raman, K. P. Smith, G. J. Muehlbauer, K. J. Chalmers,
A. Kleinhofs, and E. H. A. Kilian, “A high-density consensus map
of barley linking DArT markers to SSR, RFLP and STS loci and
agricultural traits,” BMC Genomics, vol. 7, 2006.

S. A. Plotkin, D. B. Shmoys, and E. Tardos, “Fast approximation
algorithms for fractional packing and covering problems,” in
Proceeding of FOCS, pp. 495-504, 1991.

M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” PNAS, vol. 99, pp. 7821-7826, Jun 2002.
A. Aho and et al., “The transitive reduction of a directed graph,”
SIAM Journal on Computing, vol. 1, no. 2, pp. 131-137, 1972.

A. B. Kahn, “Topological sorting of large networks,” Commun.
ACM, vol. 5, no. 11, pp. 558-562, 1962.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, XXX XXXX 15

Yonghui Wu received his Ph.D from Department
of Computer Science and Engineering, Univer-
sity of California, Riverside, USA, in August
2008. His advisor was Dr. Stefano Lonardi. He
is now a full time research and software engi-
neer with Google. His research interests are in
bioinformatics, computational biology, algorithm
in general and data mining.

Timothy J. Close is Professor of Genetics in
the Department of Botany and Plant Sciences
at the University of California, Riverside, USA.
He received his Ph.D. in Genetics in 1982 from
the University of California, Davis, USA. In 1992,
he received the Divisional Young Investigator
Award from the National Science Foundation. In
2006, he was a founding member of the Interna-
tional Barley Genome Sequencing Consortium.
In 2009 he was elected Fellow of the American
Association for the Advancement of Science. Dr.
Closes research is on genetic variation in environmental tolerance in
crop plants, particularly barley, citrus, cowpea and wheat. He has been
a leader of genome resource development in these crop plants for the
past 510 years.

Stefano Lonardi is Associate Professor of Com-
puter Science and Engineering at University of
California, Riverside, CA. Stefano received his
Laurea cum laude from University of Pisa in
1994 and his Ph.D. in the summer of 2001 from
the Department of Computer Sciences, Purdue
University, West Lafayette, IN. He also holds a
doctorate degree in Electrical and Information
Engineering from University of Padua (1999).
During the summer of 1999, he was intern at
Celera Genomics, Department of Informatics
Research, Rockville, MD.

Stefano’s recent research interest includes computational molecular
biology, data compression and data mining. He has published more
than 35 papers in major theoretical computer science and computational
biology journals and has about 45 publications in referred international
conferences. In the year 2005, he received the CAREER award from
National Science Foundation. He is a member of the IEEE Computer
Society.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


