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ABSTRACT

The Cancer Genome Atlas (TCGA) provides a rich repos-
itory of tumor sections that are collected from different labo-
ratories. However, there are a significant amount of technical
and biological variations that impede analysis. We have de-
veloped a novel approach for nuclear segmentation in histol-
ogy sections, which addresses the problem of technical and
biological variations by incorporating information from man-
ually annotated reference patches and the local color space
of the original image. Subsequently, the problem is formu-
lated within a multi-reference graph cut with geodesic con-
straints. This approach has been validated on manually cu-
rated samples and then applied to a dataset of 440 tissue sec-
tions that are typically 40k-by-40k pixels or larger. The re-
sults are available at: http://tcga.lbl.gov. And the morphome-
tric date extracted from tissue sections are publicly available
at: http://tcga-data.nci.nih.gov/tcga/tcgaAnalyticalTools.jsp.

Index Terms— Nuclear segmentation, Nuclear/Background
classification, H&E tissue section

1. INTRODUCTION

Tissue histology provides a detailed insight into cellularmor-
phology, organization, and tumor heterogeneity. In tumor
sections, it can be used to identify mitotic cells, cellularane-
uploidy, and autoimmune responses. More importantly, if tis-
sue morphology and architecture can be quantified on a very
large dataset, it will pave the way for constructing databases
that are prognostic, the same way that genome-wide array
technologies have identified molecular subtypes and predic-
tive markers. Genome-wide molecular characterization (e.g.,
transcriptome analysis) has the advantage of standardized
tools for data analysis and pathway enrichment, which can
enable hypothesis generation in the underlying mechanism.
But the protocol (i) provides an average measurement of the
tissue biopsy, (ii) can be expensive, (iii) can hide occurences
of rare events, and (iv) lacks the clarity for translating molec-
ular signature into a phenotypic signature. On the other hand,
phenotypic signatures, derived from tissue histology, arehard
to compute because of biological and technical variations,but
they offer insights into tissue composition and heterogeneity
(e.g., mixed populations) and rare events.

In order to have a robust system for characterizing tissue
sections, it needs to be able to process samples from multiple
laboratories. The Cancer Genome Atlas (TCGA) offers such
a collection, where scanned samples originate from different

labratories and are subject to technical (e.g., fixation, stain-
ing) and biological (e.g., cell type, cell state) variations. The
main technical barrier is that color composition, in the RGB
space, is not consistent across tissue sections.

It became clear that a hand segmented dictionary will be
needed not only for validation, but also for constructing a
model that captures wide variations in the nuclear staining,
both within and across tissue sections. Accordingly, our ap-
proach integrates local and global image statistics to construct
a representation for each pixel based on the Gaussian Mix-
ture Model (GMM). This representation is then regularized
with the spatial smoothness constraint through the graph cut
framework. The net result is a binarized image of blobs (a sin-
gle nucleus or a clump of nuclei), which are either validated
or partitioned further through geometric reasoning.

Organization of the rest of this paper are as follows: Sec-
tion 2 reviews previous research; Section 3 describes the de-
tails of our approach; Section 4 provides experimental and
validation results; and Section 5 concludes the paper.

2. REVIEW OF PREVIOUS WORK

The main issues that hinder correct nuclear segmentation
are technical (e.g., sample preparation) and biological het-
erogeneity (e.g., cell type). Present techniques have fo-
cused on adaptive thresholding followed by morphological
operators [1], fuzzy clustering [2], level set method using
gradient information [3], color separation followed by opti-
mum thresholding and learning [4], hybrid color and texture
analysis that are followed by learning and unsupervised clus-
tering [5]. It is also a common practice that through color
decomposition, nuclear regions can be segmented using the
same techniques that have been developed for fluorescence
microscopy. However, none of these methods can effectively
address analytical requirements of the tumor characterization.
Thresholding and clustering assume constant chromatin con-
tent for the nuclei in the image. In practice, there is a wide
variation in chromatin content. In addition, there is the issue
with overlapping and clumping of the nuclei, and sometimes,
due to the tissue thickness, they cannot be segmented.

One of the main limitations of the above techniques are
that they are often applied to a small dataset that originated
from a single laboratory. Therefore, some of the inherent vari-
abilities are minimized.



3. APPROACH

Our approach consists of two components: classification
between nuclei/background, and nuclear blob partition, as
shown in Figure 1. For classification, we leverage both global
and local image statistics, in which global image statistics,
in both RGB space and LoG response space, are extracted
from manually selected and annotated reference patches, and
local image statistics are established based on foregroundand
background seeds within a local neighborhood of the image
to be segmented. The information above is then condensed
and expressed in terms of Gaussian Mixture Models. Having
constructed the model, graphcut framework [6] is utilized to
classify nuclear and background content. Finally, delineated
blobs are subjected to convexity constraints for partitioning
clumps of nuclei [7]. In the rest of this section, we will
discuss the details of our work.
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Fig. 1. Steps in Nuclear Segmentation.

3.1. Color transformation: RGB to Blue Ratio

In order to reduce complexities for integrating LoG responses,
the RGB space is transformed to accentuate the nuclear dye.
While several techniques for color decomposition have been
proposed [8, 9], they are either time-consuming or do not
yield favorable outcome as a result of wide technical varia-
tions. Our insight led to the following transformation from
RGB space into the blue ratio space for computing the LoG
responses.BR = 100∗B

1+R+G
× 256

1+B+R+G
, whereB, R andG

are the blue, red and green intensities, respectively.

3.2. Graph Cut Model

Within the graph cut formulation, an image is represented as
a graphG = 〈V̄ , Ē〉, whereV̄ is the set of all nodes, and̄E
is the set of all arcs connecting adjacent nodes. Nodes and
edges correspond to pixels (P) and their adjacency relation-
ship, respectively. Additionally, there are special nodesthat
are known as terminals, which correspond to the set of labels
that can be assigned to pixels. In the case of a graph with two
terminals, terminals are referred to as the source (S) and the
sink (T). The labeling problem is to assign a unique labelxp

for each nodep ∈ V̄ , and the image cutout is performed by
minimizing the energy:

E =
∑

p∈V̄

(

Egf (xp) + Elf (xp)
)

+
∑

(p,q)∈Ē

Esmoothness(xp, xq)

(1)
whereEgf is the global data fitness term encoding the fit-
ness cost for assigningxp to p, Elf is the local data fitness
term encoding the fitness cost for assigningxp to p, and
Esmoothness(xp, xq) is the prior energy, denoting the cost
when the labels of adjacent nodes,p andq, arexp andxq ,
respectively. Construction of each of these terms are

3.2.1. Global fitness term

The global fitness is established based on manually annotated
reference images. Let’s assumeN reference images:Ri, i ∈
{1, ...N}, and for each reference image, Gaussian Mixture
Models are used to represent nuclear and background regions
in both RGB space and Laplacian of Gaussian (LoG) re-
sponse space, respectively:GMMk

Nuclei, GMMk
Background,

in whichk ∈ {1, ...2N}.
An input test imageI is first normalized [10] with re-

spect to every reference image,Ri, represented asNIi.
Subsequently,LoG responses ofNIi are collected to con-
struct 2N features per pixels, where the firstN features
are from the normalized color space, and the lastN fea-
tures areLoG response on the normalized image. Let (i)
fk(p) bekth feature of nodep; (ii) α be the weight ofLoG
response; (iii)pk

i be the probability function offk of re-
gion i with i = 0 : background; i = 1 : nuclei; (iv)

p
k
i (p) =

GMMk
i (p)

∑

1

j=0
GMMk

j
(p)

; and (v)λk be the weight forRi:

λk = hist(Rk) · hist(NIk)/(||hist(Rk)||||hist(NIk)||).
Wherehist(·) is the histogram function,Rk is thekth ref-
erence image,NIk is the normalized input ImageI with
respect toRk. Then the global fitness term is defined as,

Egf (xp = i) = −

N
∑

k=1

λklog(pk
i (fk(p))) (2)

−α ·

2N
∑

k=N+1

λk−N log(pk
i (fk(p)))

Where the first and second terms integrate normalized color
features andLoG responses, respectively.

3.2.2. Local Fitness Term

While global fitness term utilizes both color andLoG infor-
mation in the normalized color space, it does not utilize in-
formation in the original color space of the input image. As
a result, local variation may be lost, i.e., nuclei having a wide
range of chromatin content. The local data fitness is computed
as follows:

I) Seeds detection: This step aims to collect local nu-
clei/background seeds. It incorporates local and global image
statistics for improved seed detection. A typical end result is
shown in Figure 2(a). The protocol consists of two steps:



(a) (b)

Fig. 2. (a) An example of our seeds detection result. Green
seeds stand for nuclei, and blue seeds are for background;
(b) LoG responses can be either positive (e.g., potential back-
ground) or negative (e.g., foreground or part of foreground) in
the transformed blue ratio image. The threshold is set at the
minimum intensity in the blue ratio image that has the most
negative LoG respone.

1. Create Blue ratio image, as shown in Section 3.1.

2. Detect Seeds: Apply theLoG filter on blue ratio image,
detect peaks, and construct a distribution of blue ratio
intensity at the peaks corresponding to the negative and
positive LoG responses. A small subset of seeds can be
mislabeled, where some can be corrected in the follow-
ing steps.

3. Refine seeds: Filtering of seeds (e.g., peaks of the
LoG response) are constrained by three criteria: (i) the
LoG responses must be above a minimum conserva-
tive threshold for removing strictly noisy artifacts; (ii)
the intensity associated with the peak of the negative
LoG responses (e.g., foreground peaks) must concur
with the background threshold that is established in
Section 3.1; and (iii) within a small neighborhood of
w × w, the negative LoG response with the minimum
blue ratio, is set as a threshold for background peaks,
as shown in Figure 2(b).

II) Local Nuclei/Background color modeling: For each
pixel,p, a local neighborhood is represented by two Gaussian
Mixture Models in the original color space. The GMM model
is computed from the LoG seeds that are detected in a local
neighborhood aroundp.

The local fitness term is defined as:

Elf (xp = i) = −γlog(pi(f(p))) (3)

wheref(p) refers toRGB feature of nodep in the orig-
inal color space,γ is the weight for local fitness, andpi

is the probability function off of region i (here, i = 0 :

background; i = 1 : nuclei), andpi(p) = GMMi(p)
∑

1

j=0
GMMj(p)

3.2.3. Smoothness Term

In order to utilize the gradient information of nuclear bound-
aries, we adopt the setup from [11], in which the n-links are
specifically designed to carry the geodesic information of the
input image. Taken a 2D image grid as an example, as shown
in Figure 3, the n-link edge weight forkth family of edge line

(a) (b)

Fig. 3. (a) Eight-neighborhood 2D grid. (b) One family of
lines.

Fig. 4. An example of reference images with manual annota-
tion overlaid as green contours.

at nodep will be:

wk(p) =
δ2 · |ek|

2 · ∆φk · detD(p)

2 · (eT
k · D(p) · ek)

3

2

(4)

where,ek is thekth vector in the neighborhood system,δ is
the cell-size of the grid,△φk is the angular difference be-
tween thekth and(k + 1)th edge lines,△φk = φk+1 − φk,
andD(p) is a metric continuously varying over pointsp in a
2D Riemannian space, which is defined as:

D(p) = g(|∇I|) · I + (1 − g(|∇I|)) · u · uT (5)

whereu = ∇I
|∇I| is a unit vector in the direction of image

gradient at pointp, I is the identity matrix, andg(x) =

exp(− x2

2σ2 )

Edge Weight For
p → S Egf (xp = 1) + Elf (xp = 1) p ∈ P
p → T Egf (xp = 0) + Elf (xp = 0) p ∈ P

we(p, q) µ · wk(p)
{p, q} ∈ N,
φ−→pq ∈ {φk, π + φk}

Table 1. Edge weights for the graph construction, whereN is
the neighborhood system, andµ is the weight for smoothness.

4. DISCUSSION

In order to capture the technical variation, we manually se-
lected and annotated 20 GBM samples as reference images
from TCGA repository. Each sample is a 1k-by-1k block, and



Fig. 5. First Row: Original images; Second Row: Classifica-
tion results via MRGC; Third Row: Nuclear partition results
via geometric reasoning.

Approach Precision Recall
MRGC 0.79 0.78

Previous Approach 0.78 0.65

Table 2. Comparison of average classification performance
between MRGC, and previous approach [12].

an example is shown in Figure 4. For each input image to be
segmented, only the topM = 10 reference images with high-
est weight ofλ were used. The number of components for
GMM was fixed to be 20, and other parameter settings were:
α = 0.1, γ = 0.1, µ = 10, andw = 100. Two-fold valida-
tion was applied on the reference images, and comparisons of
average classification performance and segmentation perfor-
mance were made between our current approach(MRGC) and
our previous approach [12], as shown in Table 2 and Table 3,
respectively. Having evaluated performance of the system,we
applied our method to a large dataset containing 440 GBM tis-
sue sections which are typically 40k-by-40k pixels or larger.
Figure 5 shows some snapshots of the classification and seg-
mentation results; the complete results for all the GBM tissue
sections are available at: http://tcga.lbl.gov

5. CONCLUSION AND FUTURE WORK

We have developed a novel approach for segmenting nuclei
in H&E tissue sections. Our approach addresses the problem
of technical and biological variations by utilizing both global
information from the manually annotated reference images,
and the local information from the original color space of the
target image. The imposed geodesic constrain helps to im-
prove the accuracy of the nuclear boundary. The experimen-

Approach Precision Recall
MRGC 0.75 0.85

Previous Approach 0.63 0.75

Table 3. Comparison of average segmentation performance
between MRGC, and previous approach [12], in which
precision = #correctly segmented nuclei

#segmented nuclei
, and recall =

#correctly segmented nuclei

#manually segmented nuclei
.

tal results demonstrate the effectiveness of our approach.Our
future work will focus on improving the nuclear partition al-
gorithm by incorporating nuclear shape model.
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