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ABSTRACT labratories and are subject to technical (e.g., fixatiominst

, ) ing) and biological (e.g., cell type, cell state) variagohe
_ The Cancer Genome Atlas (TCGA) provides a rich reposain technical barrier is that color composition, in the RGB
itory of tumor sections that are collected from differertda space, is not consistent across tissue sections.

ratories. However, there are a significant amount of teanic o )
and biological variations that impede analysis. We have de- It became clear that a hand segmented dictionary will be
veloped a novel approach for nuclear segmentation in histoneeded not only for validation, but also for constructing a
ogy sections, which addresses the problem of technical arfodel that captures wide variations in the nuclear staining
biological variations by incorporating information fromam  both within and across tissue sections. Accordingly, our ap
ually annotated reference patches and the local color spaf&oach integrates local and global image statistics totcocts
of the original image. Subsequently, the problem is formu& representation for each pixel based on the Gaussian Mix-
lated within a multi-reference graph cut with geodesic coniure Model (GMM). This representation is then regularized
straints. This approach has been validated on manually ciyith the spatial smoothness constraint through the graph cu
rated samples and then applied to a dataset of 440 tissue sé@mework. The netresultis a binarized image of blobs (a sin
tions that are typically 40k-by-40k pixels or larger. The re 9le nucleus or a clump of nuclei), which are either validated
sults are available at; http://tcga.lbl.gov. And the manple- ~ ©OF partitioned further through geometric reasoning.

tric date extracted from tissue sections are publicly abée Organization of the rest of this paper are as follows: Sec-
at: http://tcga-data.nci.nih.gov/tcga/tcgaAnalyticals.jsp.  tion 2 reviews previous research; Section 3 describes the de

Index Terms— Nuclear segmentation, NucIear/Backgrou|1ﬁ\‘-|_S of our approach; Section 4 provides experimental and
classification, H&E tissue section validation results; and Section 5 concludes the paper.

1. INTRODUCTION
, . . S 2. REVIEW OF PREVIOUS WORK

Tissue histology provides a detailed insight into cellutenr-
phology, organization, and tumor heterogeneity. In tumor
sections, it can be used to identify mitotic cells, celldae-  The main issues that hinder correct nuclear segmentation
uploidy, and autoimmune responses. More importantlysif ti are technical (e.g., sample preparation) and biological he
sue morphology and architecture can be quantified on a vesrogeneity (e.g., cell type). Present techniques have fo-
large dataset, it will pave the way for constructing databas cused on adaptive thresholding followed by morphological
that are prognostic, the same way that genome-wide arrayperators [1], fuzzy clustering [2], level set method using
technologies have identified molecular subtypes and predigradient information [3], color separation followed by iept
tive markers. Genome-wide molecular characterizatian (€. mum thresholding and learning [4], hybrid color and texture
transcriptome analysis) has the advantage of standardizedalysis that are followed by learning and unsuperviseskclu
tools for data analysis and pathway enrichment, which cagering [5]. It is also a common practice that through color
enable hypothesis generation in the underlying mechanisrdecomposition, nuclear regions can be segmented using the
But the protocol (i) provides an average measurement of theame techniques that have been developed for fluorescence
tissue biopsy, (ii) can be expensive, (iii) can hide occuesn microscopy. However, none of these methods can effectively
of rare events, and (iv) lacks the clarity for translating@ee  address analytical requirements of the tumor characteiza
ular signature into a phenotypic signature. On the othedhan Thresholding and clustering assume constant chromatin con
phenotypic signatures, derived from tissue histologyharel  tent for the nuclei in the image. In practice, there is a wide
to compute because of biological and technical variatibuss, variation in chromatin content. In addition, there is theuis
they offer insights into tissue composition and heteroggne with overlapping and clumping of the nuclei, and sometimes,
(e.g., mixed populations) and rare events. due to the tissue thickness, they cannot be segmented.

In order to have a robust system for characterizing tissue One of the main limitations of the above techniques are
sections, it needs to be able to process samples from rremltipihat thev are often applied to a small dataset that grigtihate
laboratories. The Cancer Genome Atlas (TCGA) offers suc y bp

a collection, where scanned samples originate from diftere fro_n_1 a single If_;lb_or_atory. Therefore, some of the inhererttva
abilities are minimized.



3. APPROACH for each node € V, and the image cutout is performed by
minimizing the energy:

Our approach consists of two components: classification
between nuclei/background, and nuclear blob partition, a& = Z (ng(:z:p) +Elf(:cp))+ Z Eomoothness(Tp, Tq)
shown in Figure 1. For classification, we leverage both dloba ¢y (p.0)EE
and local image statistics, in which global image statstic (1)
in both RGB space and LoG response space, are extract@here F, ; is the global data fitness term encoding the fit-
from manually selected and annotated reference patches, afless cost for assigning, to p, Fj; is the local data fitness
local image statistics are established based on foregranhd term encoding the fitness cost for assigning to p, and
background seeds within a local neighborhood of the imag@smoothness(%’xq) is the prior energy, denoting the cost
to be segmented. The information above is then condenseghen the labels of adjacent nodesand ¢, arex, andx,,

and expressed in terms of Gaussian Mixture Models. Havingespectively. Construction of each of these terms are
constructed the model, graphcut framework [6] is utilized t

classify nuclear and background content. Finally, detie¢a 3.2.1. Global fitness term
blobs are subjected to convexity constraints for partitign
clumps of nuclei [7]. In the rest of this section, we will
discuss the details of our work.

The global fitness is established based on manually andotate
reference images. Let's assurivereference imagesk;,: €
{1,...N}, and for each reference image, Gaussian Mixture
Models are used to represent nuclear and background regions
in both RGB space and Laplacian of Gaussialo() re-
sponse space, respectivelyM M ¥, GM M, ot oround
inwhichk € {1,..2N}.

[: An input test image/ is first normalized [10] with re-
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Mask k )
pi(p) = %; and (V) \* be the weight forR;:
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A = hist(Ry) - hist(NIy)/(||hist(Rg)||||ist(N I

Fig. 1. Steps in Nuclear Segmentation. Wherehist(-) is the histogram functionRy, is the k*" ref-
erence image/NI; is the normalized input Imagé with
respect taR;. Then the global fitness term is defined as,

Input Image

3.1. Color transformation: RGB to Blue Ratio

N
In order to reduce complexities for integrating LoG resms)s Eole —i) = — Ak k( ek 2
the RGB space is transformed to accentuate the nuclear dye. af (@ =) Z o9(Pi (/7 (p))) @

While several techniques for color decomposition have been h=t N

proposed [8, 9], they are either time-consuming or do not o k—N k/ork
yield favorable outcome as a result of wide technical varia- @ Z AT Hog(pi (f*(p)))
tions. Our insight led to the following transformation from k=N+1

RGB space into thl%oggle ratio space for computing the LoGyhere the first and second terms integrate normalized color
responsesBR = 777 X 751 rrg WhereB, RandG  features and.oG responses, respectively.
are the blue, red and green intensities, respectively.

3.2.2. Local Fitness Term

3.2. Graph Cut Model
P While global fitness term utilizes both color an@dG infor-

Within the graph cut formulation, an image is represented amation in the normalized color space, it does not utilize in-
a graphG = (V, E), whereV is the set of all nodes, anfl ~ formation in the original color space of the input image. As
is the set of all arcs connecting adjacent nodes. Nodes aradresult, local variation may be lost, i.e., nuclei havingidev
edges correspond to pixet®) and their adjacency relation- range of chromatin content. The local data fithess is congpute
ship, respectively. Additionally, there are special notheg  as follows:

are known as terminals, which correspond to the set of labels 1) Seeds detection: This step aims to collect local nu-
that can be assigned to pixels. In the case of a graph with twdei/background seeds. It incorporates local and globagjien
terminals, terminals are referred to as the source (S) and ttstatistics for improved seed detection. A typical end reisul
sink (T). The labeling problem is to assign a unique lahel shown in Figure 2(a). The protocol consists of two steps:
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Fig. 2. (a) An example of our seeds detection result. Greerhzlge'sg' (2) Eight-neighborhood 2D grid.  (b) One family of
seeds stand for nuclei, and blue seeds are for backgrouncﬂ '
(b) LoG responses can be either positive (e.g., potentad-ba
ground) or negative (e.g., foreground or part of foregrgumd

the transformed blue ratio image. The threshold is set at the
minimum intensity in the blue ratio image that has the most

negative LoG respone.

Intensity in the weighted Blue channel

1. Create Blue ratio image, as shown in Section 3.1.

2. Detect Seeds: Apply thieoG filter on blue ratio image,
detect peaks, and construct a distribution of blue ratio

intensity at the peaks corresponding to the negative and. . .
positive LoG responses. A small subset of seeds can Hg9- 4. An example of reference images with manual annota-

mislabeled, where some can be corrected in the follow!ON OVerlaid as green contours.

ing steps.

3. Refine seeds: Filtering of seeds (e.g., peaks of th@l N0dep will be:
LoG response) are constrained by three criteria: (i) the 9 2
LoG responses must be above a minimum conserva- wy(p) = 0% - ler|” - Ay - detDB(p)
tive threshold for removing strictly noisy artifacts; (ii) 2-(ef - D(p) - ex)?
the intensity associated with the peak of the negative
LoG responses (e.g., foreground peaks) must conciwhere ey, is thek™ vector in the neighborhood systeris
with the background threshold that is established irthe cell-size of the gridA¢; is the angular difference be-
Section 3.1; and (jii) within a small neighborhood of tween thek'" and(k + 1)*" edge linesA¢y, = g1 — dr,
w x w, the negative LoG response with the minimumandD(p) is a metric continuously varying over poinisn a
blue ratio, is set as a threshold for background peaks,D Riemannian space, which is defined as:
as shown in Figure 2(b).

(4)

D(p) = g(IVI|) - 1 + (1 = g(VI])) -u-u"  (5)
II) Local Nuclei/Background color modeling: For each
pixel, p, a local neighborhood is represented by two Gaussiawhereu = % is a unit vector in the direction of image
Mixture Models in the original color space. The GMM model gradient at pointp, | is the identity matrix, andy(z)
is computed from the LoG seeds that are detected in a local 22
neighborhood aroungl crp(—357)

The local fitness term is defined as:

| Edge | Weight | For
Ep(zp = i) = —vlog(pi(f(p))) 3) p— 8 | Egp(ap =1) + Eiy(xp = 1) peEP
p—T | Egp(zp =0)+ Eiy(zp =0) peP
where f(p) refers to RGB feature of nodep in the orig- {p.q} €N,
inal color space;y is the weight for local fitness, anp; we (p, q) p - wi(p) 55 € {ow, ™+ o1}
is the probability function off of region: (here,i = 0 :
R ; o\ . GMM;(p)
background; i =1 : nuclei), andp;(p) = > =0 GMM;(p) Table 1. Edge weights for the graph construction, whidris

the neighborhood system, ands the weight for smoothness.
3.2.3. Smoothness Term

In order to utilize the gradient information of nuclear bdun 4. DISCUSSION

aries, we adopt the setup from [11], in which the n-links are

specifically designed to carry the geodesic informatiorhef t In order to capture the technical variation, we manually se-
inputimage. Taken a 2D image grid as an example, as showacted and annotated 20 GBM samples as reference images
in Figure 3, the n-link edge weight fa#" family of edge line  from TCGA repository. Each sample is a 1k-by-1k block, and



| Approach | Precision| Recall |

MRGC 0.75 0.85
Previous Approach  0.63 0.75

Table 3. Comparison of average segmentation performance
between MRGC, and previous approach [12], in which

recision =— #correctly_segmented_nuclei and recall =
p #segmented_-nuclei '
F#correctly-segmented_nuclei

#manually_segmented_-nuclei’

tal results demonstrate the effectiveness of our apprdagh.
future work will focus on improving the nuclear partitior: al
gorithm by incorporating nuclear shape model.
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