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the single fluorophore signals overlap. These methods are based 
on fitting clusters of overlapped spots with a variable number of 
point-spread functions (PSFs) with either maximum likelihood 
estimation8,9 (for example, using the DAOSTORM algorithm8) or 
Bayesian statistics10. The Bayesian method has also been applied 
to the whole image set11. Here we present another approach  
based on global optimization using compressed sensing, which 
does not involve estimating or assuming the number of mole-
cules in the image. We show that compressed sensing can work 
with much higher molecule densities compared to DAOSTORM 
and demonstrate live cell imaging of fluorescent protein–labeled 
microtubules with 3-s temporal resolution.

Compressed sensing has shown great success in many different 
fields of signal processing12,13. If the original signal is sparse (that 
is, mostly zeros) or can be made sparse after a given transforma-
tion, compressed sensing can precisely recover signal from highly 
noisy or corrupted measurements. Compressed sensing classically 
deals with a linear measurement b of the original signal x

b Ax=  

where the matrix A is a known measurement function. If x is 
sparse, it can be exactly recovered by minimizing its L1 norm (the 
sum of the absolute value of each element)

minimize || || subject to =  1x b Ax

even when b has far fewer elements than x has.
In STORM, the camera image has a linear and shift-invariant 

relationship with the true molecule distribution to be recovered. 
To model this relationship as in equation (1), we introduce a dis-
crete grid to describe the molecule positions instead of using a list 
of molecule coordinates as is typically done to represent super-
resolution images. The grid spacing is kept much smaller than 
the camera pixel size (for example, one-eighth the pixel size) to 
ensure sufficient accuracy. In this representation, both the mol-
ecule distribution in each camera frame, x, and the final super-
resolution image summed from all frames are pixelated images 
(Supplementary Fig. 1). In each camera frame, every grid point 
in x represents the brightness of a molecule located at this point. 
Grid points with no molecules fluorescing will have a value of 0. 
We then model the camera image as the convolution of the fluoro-
phore distribution, x, with the PSF, in a matrix form, as shown 
in equation (1). In this case, b corresponds to the camera image, 
and A corresponds to the PSF. The stochastic switching ensures 
sparse fluorophore distribution in each frame: that is, most of 
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In super-resolution microscopy methods based on single-
molecule switching, the rate of accumulating single-molecule 
activation events often limits the time resolution. Here we 
developed a sparse-signal recovery technique using compressed 
sensing to analyze images with highly overlapping fluorescent 
spots. This method allows an activated fluorophore density 
an order of magnitude higher than what conventional single-
molecule fitting methods can handle. Using this method,  
we demonstrated imaging microtubule dynamics in living cells 
with a time resolution of 3 s.

Despite many achievements in the field of super-resolution micros
copy in the past few years1,2, live cell imaging remains a challenge 
because of the need for high temporal resolution. Using the same 
optical system and detector as in conventional light microscopy, 
super-resolution microscopy naturally requires longer acquisition 
time to obtain more spatial information, leading to a trade-off 
between its spatial and temporal resolution. In super-resolution 
microscopy methods based on single-molecule stochastic switch-
ing, also known as stochastic optical reconstruction microscopy 
(STORM) or (fluorescence) photoactivated localization micros
copy ((F)PALM)3–5, each camera image samples a random sub-
set of probe molecules in the sample. The temporal resolution is 
mostly determined by the time required to accumulate enough 
single-molecule switching events so that adjacent localization 
points can be closer than one-half of the desired spatial resolu-
tion (Nyquist criterion)6. Achieving a 50- to 70-nm spatial resolu-
tion usually requires several thousand frames, or tens of seconds. 
Increasing the switching rates using stronger excitation can 
improve the time resolution7, but such high excitation intensity 
can increase photodamage. Moreover, in the case of fluorescent 
proteins, which are often the best labels for live samples, attempt-
ing a fast switching rate can cause signal degradation7.

An alternative approach is to increase the density of activated 
fluorophores so that each camera frame samples more molecules. 
However, this high density of fluorescent spots causes them to 
overlap, invalidating the widely used single-molecule localiza-
tion method. Recently, a number of methods have been reported 
that can efficiently retrieve single-molecule positions even when 
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the elements in x are zeros. Therefore, with the PSF known, com-
pressed sensing can recover the fluorophore positions even with 
extensive spot overlap in b. Taking into consideration that the 
measurement process is inherently noisy primarily owing to the 
photon-counting noise, we constrained the L1 norm minimiza-
tion with

minimize || || subject to || || ( )1 2
1/2x Ax b b− ≤ ⋅e Σ j

Because of the Poisson distribution of the photon shot noise in b, 
ε2 is exactly equivalent to a target unweighted reduced χ2 in the 
framework of least square fitting. The sum of all x’s from each 
camera frame gives the final reconstructed image of the structure. 
More details about our implementation are in the Online Methods 
and in Supplementary Figures 1 and 2.

(3)(3)

Using compressed sensing, we analyzed a simulated image with 
100 molecules randomly distributed in a 4 µm × 4 µm region 
(Fig. 1a). Although the images of individual molecules completely 
overlapped, we could identify almost all of the molecules. We have 
performed further simulations using molecule photon statistics 
derived from real experiments and with the molecule density rang-
ing from 1 molecule to 200 molecules (12.5 µm−2) in the simulation 
field. To make a fair comparison with other molecule identifica-
tion methods that return a collection of molecule coordinates, we 
converted the compressed sensing result from a pixelated image to 
a molecule list by identifying clusters of nonzero grid points (see 
Online Methods). Molecules within the two-pixel border of the 
simulation region were excluded from the comparison because 
they experienced lower effective molecular density. In the higher-
photon-number case corresponding to Alexa Fluor 647 (Fig. 1b), 
compressed sensing identified up to 15 times as many molecules 
as did our previously used single-molecule fitting method that 
rejects all overlapping spots14 (up to 8.8 µm−2 identified by com-
pressed sensing compared to 0.58 µm−2 by single-molecule fit-
ting). This improvement is in fact close to the fundamental limit 
(Supplementary Note and Supplementary Fig. 3). Compressed 

Figure 1 | STORM image analysis  
using compressed sensing. (a) Simulations  
that demonstrate the capability of  
compressed sensing to identify molecules 
efficiently at a high density. Scale bars,  
300 nm. Also see Supplementary Figure 7  
for a low-signal example. (b) Comparison  
of the efficiency of molecule identification  
using compressed sensing and single- 
molecule fitting. The simulation is  
for an average photon number of  
3,000 per molecule and a background  
of 70 photons per pixel (see Online  
Methods). Error bars stand for s.d. from 
repeated simulations. Dashed line marks the 
case when the number of identified molecules 
equals the number of molecules in the 
simulation. (c) Comparison of localization 
precisions. The y axis is labeled in both FWHM 
and s.d. The dashed line marks the Cremer-
Rao lower bound (CRLB) of single-molecule 
localization (8.8 nm FWHM). (d) Minimum 
number of frames to achieve a given overall 
image resolution for a continuous 2D sample. The line for the fitting method is calculated using a constant 0.58 µm−2 identified molecule density, 
whereas the curves for the compressed sensing are calculated using identified molecule densities that allow the corresponding localization 
precisions to match the desired image resolution.
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Figure 2 | Experimental STORM images using compressed sensing.  
(a) STORM imaging of microtubules in Drosophila S2 cells immunostained 
with secondary antibody labeled with the Alexa Fluor 647–Cy3 dye  
pair. Left column, conventional fluorescence image and one raw  
image frame captured during STORM data acquisition, showing high 
density of activated fluorophores. Middle column, result of single-
molecule fitting, reconstructed from 100 and 500 frames of camera 
images, respectively. Right column, result for compressed sensing using 
the same set of camera images. Scale bars, 300 nm. (b) STORM imaging 
of mEos2-tubulin in a living Drosophila S2 cell. The conventional 
fluorescence image in the leftmost panel is acquired before STORM 
imaging. Three snapshots from the STORM movie are displayed,  
each with 3-s integration time. The dynamics of the microtubules  
can be clearly observed. See Supplementary Video 1 online.
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sensing also outperforms DAOSTORM8 (Supplementary Note and 
Supplementary Fig. 4). The localization error of all three methods 
follows similar increasing trends with increasing molecule density 
(Fig. 1c and Supplementary Figs. 4 and 5). At very low densities, 
compressed sensing has slightly worse (~20%) precision than does 
single-molecule fitting, possibly because it involves an unweighted 
least-square constraint instead of a weighted one. At high densities 
(>2 µm−2), compressed sensing is substantially better.

We have also simulated two more cases with lower signal levels. 
In the medium-photon-number case corresponding to the photo-
convertible fluorescent protein mEos2 (Supplementary Fig. 6), 
the molecule identification efficiency of compressed sensing 
was only slightly reduced (up to 6.7 µm−2). Even in the very-
low-photon-number case (200 photons per molecule per frame, 
Supplementary Figs. 7 and 8), compressed sensing still recovered 
3.8 molecules per µm2 at a localization precision of 126 nm full 
width at half maximum (FWHM).

Next, we examined how compressed sensing can improve the 
temporal resolution of STORM. At a given camera frame rate, 
the time necessary to acquire a STORM image with a desired 
spatial resolution is determined by two factors: the number of 
frames needed to accumulate enough single-molecule events for 
the required sampling density (Nyquist criterion) and the maxi-
mum molecular density so that the localization precision is suffi-
ciently high. For single-molecule fitting, the Nyquist resolution is 
almost always the limiting factor, whereas for compressed sensing, 
the localization precision becomes the limit. Taking both factors  
into consideration, by matching the localization-precision– 
limited resolution and the localization-density–limited resolution, 
compressed sensing allowed the imaging speed to be increased 
by 6- to 15-fold compared to the fitting method (Fig. 1d) and  
2- to 3-fold compared to DAOSTORM, depending on the desired 
spatial resolution (see Supplementary Fig. 9).

Our STORM experiment with immunostained microtubules 
in Drosophila melanogaster S2 cells demonstrated that nearby 
microtubules can be resolved by compressed sensing using as 
few as 100 camera frames, whereas they were not discernible 
by the single-molecule fitting method (Fig. 2a). We have also 
performed live STORM on S2 cells stably expressing tubulin 
fused to mEos2. At the commonly used camera frame rate of 
56.4 Hz, we can reconstruct a super-resolution movie with a time 
resolution of 3 s (169 frames) and a Nyquist resolution of 60 nm  
(Fig. 2b and Supplementary Video 1), much faster than pre
viously reported6. These results have proven that compressed 
sensing can enable STORM to monitor live cellular processes with 
second-scale time resolution, or even sub-second-scale resolution 
if a fast electron-multiplying charge-coupled device (EMCCD)7 

or scientific CMOS (complementary metal-oxide-semiconductor)  
camera is used. Moreover, although we have only analyzed two-
dimensional (2D) data, our method in principle also applies to 
3D super-resolution microscopy, when a 3D grid and the 3D 
PSF are used, for example, in conjugation with the astigmatic  
localization method15.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
STORM data analysis by compressed sensing. Mathematically, 
each frame of the measured camera image, b, has a linear relation-
ship with the molecule distribution, x

b Ax=  

where the one-dimensional vectors, b and x, consist of row-wise 
concatenations of the camera and the super-resolution images, 
respectively. The matrix A is determined by the point-spread func-
tion (PSF) of the imaging system. The ith column of A corresponds 
to the acquired raw image if only one molecule emits fluoroscopic 
photons at the position index i of x. The goal of the super-resolution  
image analysis is to obtain x from the measured b, provided that 
A is exactly known and x is non-negative and sparse (that is, 
mostly zeros). Many different mathematical formulations have 
been proposed in the literature to implement the L1-norm mini-
mization for compressed sensing16,17. Specifically, we used the 
following formulation:

Minimize

Subject to and

T:

: || || ( ) /

c

i j

x

x Ax b b≥ − ≤ ⋅0 2
1 2e Σ

where the weight vector, c, is to account for the difference of the 
total contribution to the camera image from one fluorescent 
molecule at different locations. The value of the ith element of c 
equals the summation of the ith column of A. The minimization 
term, cTx, is equivalent to a weighted L1 norm of x because x is  
non-negative.

Because (||Ax − b||2)2 is the sum of squared deviations of the 
optimization result from the image value, the constraint on  
||Ax − b||2 sets an upper limit of χ2 on how well the optimization 
results can match the original image. The Poisson statistics of 
photon counting implies that the variance of photon counts 
on pixel j equals the expectation of the photon counts on that 
pixel. Therefore, ε2 sets the maximum ratio between the sum of 
squared deviations and the sum of variances (Σbj) equivalent to 
the reduced χ2 without weighting each pixel individually.

To account for the background of the image, we introduced one 
additional element in x. The corresponding element in c is set to 0, 
and all elements in the corresponding column of A are set to 1. In 
this case, the value of this extra element in x represents a uniform 
image background, with no sparsity constraint imposed on.

The optimization problem can be solved using standard linear 
programming with quadratic constraints. A direct implemen-
tation of the algorithm, however, requires large memory and 
computation power, mainly because of the large size of the super- 
resolution image. Note that the PSF of the imaging system is 
typically very narrow. We can therefore carry out the optimiza-
tion separately on small patches of the original image without  
compromising the overall performance. The detailed proce-
dure of our compressed sensing analysis is described in the 
Supplementary Note.

In reality, x describes the fluorescence intensity of mole-
cules on a grid with a spacing much smaller than the camera  
pixel size. We defined the ratio between the pixel size and 
the grid spacing as the oversampling factor, R. A smaller R 
leads to smaller error in registering molecule positions, but 
it results in longer computation time. The overall perform-
ance of compressed sensing, however, is rather insensitive to R  

(4)(4)

(5)(5)

(see Supplementary Fig. 1) because it depends mainly on the 
number of nonzero elements in x, which is independent of the 
grid size. In all our analyses, we chose R = 8. With a pixel size 
of 166 nm, the 21-nm grid size should be able to support a final 
image resolution of 42 nm.

The choice of the size of small image patch will not affect the 
compressed sensing results as long as it is large enough to cover 
at least one full PSF. Given that the PSF in our case has an s.d. of 
about one pixel, throughout this manuscript, we have used a patch 
size of 7 × 7 to balance the number of patches to be optimized and 
the time to optimize each patch.

The choice of the value of ε dictates the balance of sparsity and 
fidelity in the optimization. An ε value of 1 demands a perfect fit 
to the original camera image (a reduced χ2 of unity). To accom-
modate uncertainties in estimating the variances, the value of ε is 
usually set to be slightly larger than 1. In our test, we have found 
that the recovery of the super-resolution image is not substantially 
affected with ε value between 1.5 and 2 (Supplementary Fig. 2). 
Therefore, we have chosen ε = 1.5 as the universal setting for all 
of our analyses of simulated data.

For experimental data acquired by an EMCCD camera, a factor 
of √2 must be applied to account for the excess noise introduced 
by the gain registers in the camera18. Therefore, an ε value of 2.1 
is used when analyzing our experimental data.

We have implemented the algorithm in MATLAB using the 
CVX optimization package19. The analysis code as well as a set of 
example data is included in the Supplementary Software.

Simulation. To evaluate the performance of our compressed  
sensing algorithm, we generated simulation images so that 
the analysis results can be compared to the ‘known’ molecule  
positions. The simulation randomly places N molecules in a  
24 × 24 pixel area in the middle of a 32 × 32 pixel image. The  
pixel size, 166 nm, matches the pixel size of our experimental 
setup and roughly equals the s.d. of the PSF of our setup. With 
the 8 × 8 subdivision, the grid size in the super-resolution  
image is 21 nm. The simulation program calculates the photon 
counts in each pixel by taking the following fluctuation sources 
into consideration:
1. �The variation of emitted photons from each molecule. In  

a STORM experiment, the number of photons detected from 
each molecule varies greatly owing to the stochastic nature 
of photoswitching. In our simulation, we use a log-normal  
distribution to approximate the experimentally measured 
single-molecule photon number distribution. We note that 
the experimental distribution is close to but not exactly an 
exponential distribution because it counts the photon number 
in one frame instead of the entire photoswitching cycle of  
a fluorophore.

2. �The experimentally measured PSF. The PSF of the microscope 
is measured by acquiring STORM images with low molecule 
density, aligning single-molecule fluorescent spots according to 
their centers of mass, normalizing and then averaging the aligned 
single-molecule images. In all of our cases, the radial cross- 
section of the PSF can be nicely fit by the sum of two Gaussian 
functions, one describing the center peak and the other  
describing the side lobe.

3. �The background and photon counting noise. The number of 
detected photons of a pixel follows a Poisson distribution with 
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the mean determined by the fluorescence signal at the pixel 
and a uniform background. The camera digitization noise is 
negligible when using an EMCCD camera at proper gain settings.  
We have not taken into account the excess noise introduced by 
the EMCCD gain registers.
In our simulations for Figure 1b–d and Supplementary  

Figures 4, 5 and 9, we set the peak of the log-normal photon 
number distribution at 3,000 photons (with an s.d. of 1,700  
photons) to match that in the experiment of photoswitchable 
Alexa Fluor 647. The background is 70 photons per pixel. For 
each N, the simulation is repeated 50 times (1,000 times when  
N = 1, for better statistics). For the single-molecule fitting  
method, because of its poor performance in molecule identifica-
tion at high molecule density, we have run 450 additional simula-
tions for each of the high-molecule-number conditions (N ≥ 40). 
The simulated images are analyzed using the compressed sensing 
algorithm described above, as well as the single-molecule fitting 
algorithm that we used in our previous publications14. The single-
molecule fitting algorithm uses an elliptical Gaussian function 
to fit a local maximum in the image, and then applies thresholds 
in peak height, peak width and ellipticity to reject overlapped 
molecules. To determine the thresholds, we analyzed the N = 1 
simulation with relaxed thresholding, determined the distribution 
of the corresponding parameters and set the threshold value.

For the purpose of visualization, in Figure 1a and 
Supplementary Figures 1 and 2, we have fixed the number of 
photons of all molecules to 3,000, so that the recovered grid points 
are of similar brightness and thus better discerned by eyes. The 
background is still 70 photons per pixel. For the same reason, 
we have fixed the number of photons of all molecules to 200 in 
Supplementary Figure 7. The background in this case is 20 pho-
tons per pixel.

We have also performed two additional simulations: one with 
a mean photon number of 750 (s.d. of 460) and a background of  
50 photons per pixel to match that in the experiment of mEos2  
(see Supplementary Fig. 6), the other with a mean photon  
number of 200 (s.d. of 77) and a background of 10 photons 
per pixel for a hypothetically low-photon-count case (see 
Supplementary Fig. 8).

Method evaluation. The performance of a STORM image ana
lysis algorithm can be characterized by two metrics: the number 
of molecules that can be identified from an image, and the preci-
sion of determining their positions. Unlike the single-molecule 
fitting method, our compressed sensing algorithm does not 
directly return a list of molecule coordinates. Instead, it returns 
a pixelated super-resolution image representing the intensities 
of molecules on a fixed grid. We note that in the case when 
a molecule is not located exactly at a grid point, compressed 
sensing can assign nonzero intensity to the several grid points 
adjacent to the actual position. Although this effect does not 
affect the super-resolution image quality because the grid size 
is much smaller than the desired resolution in high-molecule-
density images, it complicates molecule number counting. To 
make a fair comparison with the single-molecule fitting method, 
we convert the compressed sensing results into a list of mol-
ecule positions by treating a group of adjacent nonzero grids as 
one identified molecule and calculating its ‘position’ from the 
center of mass. To avoid the ‘edge effect’ whereby molecules at 

the periphery of the simulation region experiences lower den-
sity, those in the two-pixel border of the simulation region are 
excluded from the evaluation. The results are shown in Figure 1b  
and Supplementary Figures 4, 6 and 8.

On the other hand, not all the identified molecules may have 
correct position information. To characterize the localization 
precision, we match each of the identified molecules in either 
method to the closest ‘true position’ known from the simulation. 
Supplementary Figure 5 displays the histograms of the offset in 
either the x or y direction with 1, 14, 50 or 125 molecules in the 
16-µm2 simulation area. We fit all the histograms with Gaussian 
peaks and plotted the FWHM values as a function of molecule 
number in Figure 1c and Supplementary Figures 4, 6 and 8.

In the end, the overall image resolution is determined by both 
the density of identified molecules (through the Nyquist sampling 
criteria) and the precision of determining their positions. The 
number of camera image frames to accumulate enough identi-
fied molecules then links the time resolution to the Nyquist lim-
ited spatial resolution. In the case of the single-molecule fitting 
method with high photon number, the maximum identified mol-
ecule density is 0.58 µm−2 in each frame, with a high localization 
precision of 20 nm (FWHM). Therefore, when one would like 
to demand a worse spatial resolution (for example, 60 nm) in 
return for a higher temporal resolution, the identified molecule 
density is always the limiting factor. On the contrary, compressed 
sensing can identify many more molecules at the price of worse 
localization precision. In these cases, we determined an ‘optimal’ 
molecule density so that the localization-limited resolution equals 
the density-limited resolution. We then calculated the minimum 
number of frames required, at this ‘optimal’ molecule density, 
to achieve the given Nyquist limited resolution (see Fig. 1d and 
Supplementary Fig. 9).

Sample preparation. Wild-type S2 cells or S2 cells stably express-
ing mEos2-tubulin (gift from E. Griffis in the Ron Vale laboratory 
at UCSF) were cultured in Sf-900 II serum free medium (Gibco). 
Cells were plated onto Lab-Tek II eight-well chambered no. 1.5 
cover glass (Nunc) for fluorescence imaging. Before cell seeding, 
each chamber was coated with 0.1 mg/ml concanavalin A for at 
least 0.5 h to allow the cells to acquire a fattened, well-spread 
morphology. Then cells were seeded into the chambers for 1 h.

For live cell imaging, S2 cells were imaged in the same serum-
free medium as they were normally cultured in. For fixed cell 
imaging, cells were fixed with 3% paraformaldehyde and 0.1% 
glutaraldehyde in PBS for 10 min, treated with 0.1% NaBH4 for 
7 min, then permeabilized and blocked with 0.5% Triton-X 100 
and 3% bovine serum albumin for 10 min. Staining of tubulin was 
done with mouse monoclonal anti–α-tubulin antibody (1:250,  
45-min incubation; clone DM1A, T6199, Sigma) and secondary 
donkey anti-mouse antibody (715-005-151, Jackson Immuno Lab), 
which we labeled with a mixture of Alexa Fluor 647 and Cy3 dyes  
(3 µg/ml, 45-min incubation)14. Fixed cells were imaged in mer-
captoethylamine imaging buffer supplemented with an anti-
bleaching oxygen scavenger system as previously described20.

Optical setup and imaging. The STORM microscope was con-
structed with a Nikon Eclipse Ti inverted microscope equipped 
with a motorized xy stage (Märzhäuser) and a Nikon perfect focus 
system, which stabilizes the focusing. Three diode lasers (405 nm 
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from Stradus 405-100, 488 nm from Stradus 488-50, 642 nm from 
Stradus 642-110; Vortran) were directly shuttered by the computer.  
The 561-nm solid-state laser (Sapphire 561-200, Coherent) 
light was controlled by an acoustic optical modulator (Crystal 
Technology). Each laser passed through a filter wheel to control 
its laser power after the laser output. The four lasers were coupled 
and collimated into a telescopic optical path and focused to the 
back focal plane of the oil-immersion objective (Nikon Plan Apo 
VC 100X/1.40) on the microscope.

A quad-band beamsplitter zt405/488/561/640rpc (Chroma) and 
a slider equipped with band-pass filters (ET605/70M for mEos2, 
ET700/70M for Alexa Fluo 647, Chroma) were used to sepa-
rate the fluorescence signal. The images were recorded with an 
EMCCD camera (Ixon DV897DCS-BV, Andor) at a frame rate of 
56.4 Hz. For excitation, the powers of 561 nm (mEos2) and 642 nm  

(Alexa Fluor 647) lasers were 30 mW and 36 mW, respectively, 
measured at the back port of the microscope. The activation laser 
intensity, typically 10–30 µW, is adjusted so that a high density of 
mEos2 or Alexa Fluor 647 molecules is activated in each camera  
frame. All instrument control and image acquisition were  
performed with home-written software in Python.
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