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Faster STORM using
compressed sensing

Lei Zhu!, Wei Zhang?, Daniel Elnatan’® & Bo Huang?*

In super-resolution microscopy methods based on single-
molecule switching, the rate of accumulating single-molecule
activation events often limits the time resolution. Here we
developed a sparse-signal recovery technique using compressed
sensing to analyze images with highly overlapping fluorescent
spots. This method allows an activated fluorophore density

an order of magnitude higher than what conventional single-
molecule fitting methods can handle. Using this method,

we demonstrated imaging microtubule dynamics in living cells
with a time resolution of 3 s.

Despite many achievements in the field of super-resolution micros-
copy in the past few years2, live cell imaging remains a challenge
because of the need for high temporal resolution. Using the same
optical system and detector as in conventional light microscopy,
super-resolution microscopy naturally requires longer acquisition
time to obtain more spatial information, leading to a trade-off
between its spatial and temporal resolution. In super-resolution
microscopy methods based on single-molecule stochastic switch-
ing, also known as stochastic optical reconstruction microscopy
(STORM) or (fluorescence) photoactivated localization micros-
copy ((F)PALM)3~>, each camera image samples a random sub-
set of probe molecules in the sample. The temporal resolution is
mostly determined by the time required to accumulate enough
single-molecule switching events so that adjacent localization
points can be closer than one-half of the desired spatial resolu-
tion (Nyquist criterion)®. Achieving a 50- to 70-nm spatial resolu-
tion usually requires several thousand frames, or tens of seconds.
Increasing the switching rates using stronger excitation can
improve the time resolution’, but such high excitation intensity
can increase photodamage. Moreover, in the case of fluorescent
proteins, which are often the best labels for live samples, attempt-
ing a fast switching rate can cause signal degradation’.

An alternative approach is to increase the density of activated
fluorophores so that each camera frame samples more molecules.
However, this high density of fluorescent spots causes them to
overlap, invalidating the widely used single-molecule localiza-
tion method. Recently, a number of methods have been reported
that can efficiently retrieve single-molecule positions even when
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the single fluorophore signals overlap. These methods are based
on fitting clusters of overlapped spots with a variable number of
point-spread functions (PSFs) with either maximum likelihood
estimation®? (for example, using the DAOSTORM algorithm?®) or
Bayesian statistics!?. The Bayesian method has also been applied
to the whole image set!!. Here we present another approach
based on global optimization using compressed sensing, which
does not involve estimating or assuming the number of mole-
cules in the image. We show that compressed sensing can work
with much higher molecule densities compared to DAOSTORM
and demonstrate live cell imaging of fluorescent protein-labeled
microtubules with 3-s temporal resolution.

Compressed sensing has shown great success in many different
fields of signal processing!?13. If the original signal is sparse (that
is, mostly zeros) or can be made sparse after a given transforma-
tion, compressed sensing can precisely recover signal from highly
noisy or corrupted measurements. Compressed sensing classically
deals with a linear measurement b of the original signal x

b= Ax (1)

where the matrix A is a known measurement function. If x is
sparse, it can be exactly recovered by minimizing its L1 norm (the
sum of the absolute value of each element)

minimize || x ||; subjecttob = Ax )

even when b has far fewer elements than x has.

In STORM, the camera image has a linear and shift-invariant
relationship with the true molecule distribution to be recovered.
To model this relationship as in equation (1), we introduce a dis-
crete grid to describe the molecule positions instead of using a list
of molecule coordinates as is typically done to represent super-
resolution images. The grid spacing is kept much smaller than
the camera pixel size (for example, one-eighth the pixel size) to
ensure sufficient accuracy. In this representation, both the mol-
ecule distribution in each camera frame, x, and the final super-
resolution image summed from all frames are pixelated images
(Supplementary Fig. 1). In each camera frame, every grid point
in x represents the brightness of a molecule located at this point.
Grid points with no molecules fluorescing will have a value of 0.
We then model the camera image as the convolution of the fluoro-
phore distribution, x, with the PSF, in a matrix form, as shown
in equation (1). In this case, b corresponds to the camera image,
and A corresponds to the PSE. The stochastic switching ensures
sparse fluorophore distribution in each frame: that is, most of
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Figure 1 | STORM image analysis a
using compressed sensing. (a) Simulations
that demonstrate the capability of
compressed sensing to identify molecules
efficiently at a high density. Scale bars,

300 nm. Also see Supplementary Figure 7
for a low-signal example. (b) Comparison

of the efficiency of molecule identification
using compressed sensing and single-
molecule fitting. The simulation is

for an average photon number of

3,000 per molecule and a background

of 70 photons per pixel (see Online

Methods). Error bars stand for s.d. from
repeated simulations. Dashed line marks the
case when the number of identified molecules
equals the number of molecules in the
simulation. (c) Comparison of localization
precisions. The y axis is labeled in both FWHM
and s.d. The dashed line marks the Cremer-
Rao lower bound (CRLB) of single-molecule
localization (8.8 nm FWHM). (d) Minimum
number of frames to achieve a given overall
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image resolution for a continuous 2D sample. The line for the fitting method is calculated using a constant 0.58 um~2 identified molecule density,
whereas the curves for the compressed sensing are calculated using identified molecule densities that allow the corresponding localization

precisions to match the desired image resolution.

the elements in x are zeros. Therefore, with the PSF known, com-
pressed sensing can recover the fluorophore positions even with
extensive spot overlap in b. Taking into consideration that the
measurement process is inherently noisy primarily owing to the
photon-counting noise, we constrained the L1 norm minimiza-
tion with

minimize || x ||; subjectto ||Ax — b]|; < g.(ij)l/z 3)

Because of the Poisson distribution of the photon shot noise in b,
€? is exactly equivalent to a target unweighted reduced y? in the
framework of least square fitting. The sum of all x’s from each
camera frame gives the final reconstructed image of the structure.
More details about our implementation are in the Online Methods
and in Supplementary Figures 1 and 2.

a Fitting Compressed sensing

onventional fluorescence

100 frames

500 frames
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Using compressed sensing, we analyzed a simulated image with
100 molecules randomly distributed in a 4 um x 4 um region
(Fig. 1a). Although the images of individual molecules completely
overlapped, we could identify almost all of the molecules. We have
performed further simulations using molecule photon statistics
derived from real experiments and with the molecule density rang-
ing from 1 molecule to 200 molecules (12.5 tm~2) in the simulation
field. To make a fair comparison with other molecule identifica-
tion methods that return a collection of molecule coordinates, we
converted the compressed sensing result from a pixelated image to
a molecule list by identifying clusters of nonzero grid points (see
Online Methods). Molecules within the two-pixel border of the
simulation region were excluded from the comparison because
they experienced lower effective molecular density. In the higher-
photon-number case corresponding to Alexa Fluor 647 (Fig. 1b),
compressed sensing identified up to 15 times as many molecules
as did our previously used single-molecule fitting method that
rejects all overlapping spots!# (up to 8.8 um~2 identified by com-
pressed sensing compared to 0.58 um~2 by single-molecule fit-
ting). This improvement is in fact close to the fundamental limit
(Supplementary Note and Supplementary Fig. 3). Compressed

Figure 2 | Experimental STORM images using compressed sensing.

(a) STORM imaging of microtubules in Drosophila S2 cells immunostained
with secondary antibody labeled with the Alexa Fluor 647-Cy3 dye

pair. Left column, conventional fluorescence image and one raw

image frame captured during STORM data acquisition, showing high
density of activated fluorophores. Middle column, result of single-
molecule fitting, reconstructed from 100 and 500 frames of camera
images, respectively. Right column, result for compressed sensing using
the same set of camera images. Scale bars, 300 nm. (b) STORM imaging
of mEos2-tubulin in a living Drosophila S2 cell. The conventional
fluorescence image in the leftmost panel is acquired before STORM
imaging. Three snapshots from the STORM movie are displayed,

each with 3-s integration time. The dynamics of the microtubules

can be clearly observed. See Supplementary Video 1 online.
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sensing also outperforms DAOSTORMS® (Supplementary Note and
Supplementary Fig. 4). The localization error of all three methods
follows similar increasing trends with increasing molecule density
(Fig. 1c and Supplementary Figs. 4 and 5). At very low densities,
compressed sensing has slightly worse (~20%) precision than does
single-molecule fitting, possibly because it involves an unweighted
least-square constraint instead of a weighted one. At high densities
(>2 um~2), compressed sensing is substantially better.

We have also simulated two more cases with lower signal levels.
In the medium-photon-number case corresponding to the photo-
convertible fluorescent protein mEos2 (Supplementary Fig. 6),
the molecule identification efficiency of compressed sensing
was only slightly reduced (up to 6.7 um~2). Even in the very-
low-photon-number case (200 photons per molecule per frame,
Supplementary Figs. 7 and 8), compressed sensing still recovered
3.8 molecules per m? at a localization precision of 126 nm full
width at half maximum (FWHM).

Next, we examined how compressed sensing can improve the
temporal resolution of STORM. At a given camera frame rate,
the time necessary to acquire a STORM image with a desired
spatial resolution is determined by two factors: the number of
frames needed to accumulate enough single-molecule events for
the required sampling density (Nyquist criterion) and the maxi-
mum molecular density so that the localization precision is suffi-
ciently high. For single-molecule fitting, the Nyquist resolution is
almost always the limiting factor, whereas for compressed sensing,
the localization precision becomes the limit. Taking both factors
into consideration, by matching the localization-precision-
limited resolution and the localization-density-limited resolution,
compressed sensing allowed the imaging speed to be increased
by 6- to 15-fold compared to the fitting method (Fig. 1d) and
2- to 3-fold compared to DAOSTORM, depending on the desired
spatial resolution (see Supplementary Fig. 9).

Our STORM experiment with immunostained microtubules
in Drosophila melanogaster S2 cells demonstrated that nearby
microtubules can be resolved by compressed sensing using as
few as 100 camera frames, whereas they were not discernible
by the single-molecule fitting method (Fig. 2a). We have also
performed live STORM on S2 cells stably expressing tubulin
fused to mEos2. At the commonly used camera frame rate of
56.4 Hz, we can reconstruct a super-resolution movie with a time
resolution of 3 s (169 frames) and a Nyquist resolution of 60 nm
(Fig. 2b and Supplementary Video 1), much faster than pre-
viously reported®. These results have proven that compressed
sensing can enable STORM to monitor live cellular processes with
second-scale time resolution, or even sub-second-scale resolution
if a fast electron-multiplying charge-coupled device (EMCCD)’
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or scientific CMOS (complementary metal-oxide-semiconductor)
camera is used. Moreover, although we have only analyzed two-
dimensional (2D) data, our method in principle also applies to
3D super-resolution microscopy, when a 3D grid and the 3D
PSF are used, for example, in conjugation with the astigmatic
localization method!®.

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS

We thank E. Griffis and R. Vale (University of California, San Francisco) for
generously providing the mEos2-tubulin S2 cells, and Q. Fan (Georgia Institute
of Technology) for running the DAOSTORM code. L.Z. receives support from US
National Institutes of Health 1R21EB012700-01 A1l. B.H. receives support from
the UCSF Program for Breakthrough Biomedical Research, Searle Scholarship, and
Packard Fellowship for Science and Engineering.

AUTHOR CONTRIBUTIONS

L.Z. and B.H. conceived the project and developed the algorithms, W.Z.
performed the experiments, D.E. and B.H. analyzed the data, and L.Z. and
B.H. wrote the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nmeth.1978.
Reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Huang, B., Babcock, H. & Zhuang, X. Cell 143, 1047-1058 (2010).

2. Hell, S.W. Nat. Methods 6, 24-32 (2009).

3. Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793-795 (2006).

4. Betzig, E. et al. Science 313, 1642-1645 (2006).

5. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Biophys. J. 91, 4258-4272
(2006).

6. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Nat. Methods 5,

417-423 (2008).

7. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Nat. Methods 8, 499-505
(2011).

8. Holden, S.J., Uphoff, S. & Kapanidis, A.N. Nat. Methods 8, 279-280
(2011).

9. Huang, F., Schwartz, S.L., Byars, J.M. & Lidke, K.A. Biomed. Opt. Express 2,
1377-1393 (2011).

10. Quan, T. et al. Opt. Express 19, 16963-16974 (2011).

11. Cox, S. et al. Nat. Methods 9, 195-200 (2012).

12. Candés, E.J., Romberg, J. & Tao, T. IEEE Trans. Inf. Theory 52, 489-509
(2004).

13. Zhu, L. et al. Phys. Med. Biol. 53, 6653-6672 (2008).

14. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Science 317, 1749-1753
(2007).

15. Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810-813
(2008).

NATURE METHODS | VOL.9 NO.7 | JULY 2012 | 723


http://www.nature.com/doifinder/10.1038/nmeth.1978
http://www.nature.com/doifinder/10.1038/nmeth.1978
http://www.nature.com/doifinder/10.1038/nmeth.1978

© 2012 Nature America, Inc. All rights reserved.

&

ONLINE METHODS

STORM data analysis by compressed sensing. Mathematically,
each frame of the measured camera image, b, has a linear relation-
ship with the molecule distribution, x

b= Ax (4)

where the one-dimensional vectors, b and x, consist of row-wise
concatenations of the camera and the super-resolution images,
respectively. The matrix A is determined by the point-spread func-
tion (PSF) of the imaging system. The i column of A corresponds
to the acquired raw image if only one molecule emits fluoroscopic
photons at the position index i of x. The goal of the super-resolution
image analysis is to obtain x from the measured b, provided that
A is exactly known and x is non-negative and sparse (that is,
mostly zeros). Many different mathematical formulations have
been proposed in the literature to implement the L1-norm mini-
mization for compressed sensing!®17. Specifically, we used the
following formulation:

Minimize:c ! x (5)

Subjectto:x; 2 0 and || Ax — b||; < .e“(ij)I/2

where the weight vector, ¢, is to account for the difference of the
total contribution to the camera image from one fluorescent
molecule at different locations. The value of the i element of ¢
equals the summation of the i" column of A. The minimization
term, c'x, is equivalent to a weighted L1 norm of x because x is
non-negative.

Because (||Ax — b||,)? is the sum of squared deviations of the
optimization result from the image value, the constraint on
[|[Ax — b||, sets an upper limit of y? on how well the optimization
results can match the original image. The Poisson statistics of
photon counting implies that the variance of photon counts
on pixel j equals the expectation of the photon counts on that
pixel. Therefore, € sets the maximum ratio between the sum of
squared deviations and the sum of variances (Xb;) equivalent to
the reduced y? without weighting each pixel individually.

To account for the background of the image, we introduced one
additional element in x. The corresponding element in cis set to 0,
and all elements in the corresponding column of A are set to 1. In
this case, the value of this extra element in x represents a uniform
image background, with no sparsity constraint imposed on.

The optimization problem can be solved using standard linear
programming with quadratic constraints. A direct implemen-
tation of the algorithm, however, requires large memory and
computation power, mainly because of the large size of the super-
resolution image. Note that the PSF of the imaging system is
typically very narrow. We can therefore carry out the optimiza-
tion separately on small patches of the original image without
compromising the overall performance. The detailed proce-
dure of our compressed sensing analysis is described in the
Supplementary Note.

In reality, x describes the fluorescence intensity of mole-
cules on a grid with a spacing much smaller than the camera
pixel size. We defined the ratio between the pixel size and
the grid spacing as the oversampling factor, R. A smaller R
leads to smaller error in registering molecule positions, but
it results in longer computation time. The overall perform-
ance of compressed sensing, however, is rather insensitive to R
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(see Supplementary Fig. 1) because it depends mainly on the
number of nonzero elements in x, which is independent of the
grid size. In all our analyses, we chose R = 8. With a pixel size
of 166 nm, the 21-nm grid size should be able to support a final
image resolution of 42 nm.

The choice of the size of small image patch will not affect the
compressed sensing results as long as it is large enough to cover
at least one full PSE Given that the PSF in our case has an s.d. of
about one pixel, throughout this manuscript, we have used a patch
size of 7 x 7 to balance the number of patches to be optimized and
the time to optimize each patch.

The choice of the value of € dictates the balance of sparsity and
fidelity in the optimization. An € value of 1 demands a perfect fit
to the original camera image (a reduced ? of unity). To accom-
modate uncertainties in estimating the variances, the value of € is
usually set to be slightly larger than 1. In our test, we have found
that the recovery of the super-resolution image is not substantially
affected with € value between 1.5 and 2 (Supplementary Fig. 2).
Therefore, we have chosen € = 1.5 as the universal setting for all
of our analyses of simulated data.

For experimental data acquired by an EMCCD camera, a factor
of V2 must be applied to account for the excess noise introduced
by the gain registers in the camera!®. Therefore, an € value of 2.1
is used when analyzing our experimental data.

We have implemented the algorithm in MATLAB using the
CVX optimization package!®. The analysis code as well as a set of
example data is included in the Supplementary Software.

Simulation. To evaluate the performance of our compressed
sensing algorithm, we generated simulation images so that
the analysis results can be compared to the ‘known’ molecule
positions. The simulation randomly places N molecules in a
24 x 24 pixel area in the middle of a 32 x 32 pixel image. The
pixel size, 166 nm, matches the pixel size of our experimental
setup and roughly equals the s.d. of the PSF of our setup. With
the 8 x 8 subdivision, the grid size in the super-resolution
image is 21 nm. The simulation program calculates the photon
counts in each pixel by taking the following fluctuation sources
into consideration:

1. The variation of emitted photons from each molecule. In
a STORM experiment, the number of photons detected from
each molecule varies greatly owing to the stochastic nature
of photoswitching. In our simulation, we use a log-normal
distribution to approximate the experimentally measured
single-molecule photon number distribution. We note that
the experimental distribution is close to but not exactly an
exponential distribution because it counts the photon number
in one frame instead of the entire photoswitching cycle of
a fluorophore.

2. The experimentally measured PSFE. The PSF of the microscope
is measured by acquiring STORM images with low molecule
density, aligning single-molecule fluorescent spots according to
their centers of mass, normalizing and then averaging the aligned
single-molecule images. In all of our cases, the radial cross-
section of the PSF can be nicely fit by the sum of two Gaussian
functions, one describing the center peak and the other
describing the side lobe.

3. The background and photon counting noise. The number of
detected photons of a pixel follows a Poisson distribution with
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the mean determined by the fluorescence signal at the pixel

and a uniform background. The camera digitization noise is

negligible when using an EMCCD camera at proper gain settings.

We have not taken into account the excess noise introduced by

the EMCCD gain registers.

In our simulations for Figure 1b-d and Supplementary
Figures 4, 5 and 9, we set the peak of the log-normal photon
number distribution at 3,000 photons (with an s.d. of 1,700
photons) to match that in the experiment of photoswitchable
Alexa Fluor 647. The background is 70 photons per pixel. For
each N, the simulation is repeated 50 times (1,000 times when
N =1, for better statistics). For the single-molecule fitting
method, because of its poor performance in molecule identifica-
tion at high molecule density, we have run 450 additional simula-
tions for each of the high-molecule-number conditions (N > 40).
The simulated images are analyzed using the compressed sensing
algorithm described above, as well as the single-molecule fitting
algorithm that we used in our previous publications'*. The single-
molecule fitting algorithm uses an elliptical Gaussian function
to fit a local maximum in the image, and then applies thresholds
in peak height, peak width and ellipticity to reject overlapped
molecules. To determine the thresholds, we analyzed the N = 1
simulation with relaxed thresholding, determined the distribution
of the corresponding parameters and set the threshold value.

For the purpose of visualization, in Figure la and
Supplementary Figures 1 and 2, we have fixed the number of
photons of all molecules to 3,000, so that the recovered grid points
are of similar brightness and thus better discerned by eyes. The
background is still 70 photons per pixel. For the same reason,
we have fixed the number of photons of all molecules to 200 in
Supplementary Figure 7. The background in this case is 20 pho-
tons per pixel.

We have also performed two additional simulations: one with
a mean photon number of 750 (s.d. of 460) and a background of
50 photons per pixel to match that in the experiment of mEos2
(see Supplementary Fig. 6), the other with a mean photon
number of 200 (s.d. of 77) and a background of 10 photons
per pixel for a hypothetically low-photon-count case (see
Supplementary Fig. 8).

Method evaluation. The performance of a STORM image ana-
lysis algorithm can be characterized by two metrics: the number
of molecules that can be identified from an image, and the preci-
sion of determining their positions. Unlike the single-molecule
fitting method, our compressed sensing algorithm does not
directly return a list of molecule coordinates. Instead, it returns
a pixelated super-resolution image representing the intensities
of molecules on a fixed grid. We note that in the case when
a molecule is not located exactly at a grid point, compressed
sensing can assign nonzero intensity to the several grid points
adjacent to the actual position. Although this effect does not
affect the super-resolution image quality because the grid size
is much smaller than the desired resolution in high-molecule-
density images, it complicates molecule number counting. To
make a fair comparison with the single-molecule fitting method,
we convert the compressed sensing results into a list of mol-
ecule positions by treating a group of adjacent nonzero grids as
one identified molecule and calculating its ‘position’ from the
center of mass. To avoid the ‘edge effect’ whereby molecules at
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the periphery of the simulation region experiences lower den-
sity, those in the two-pixel border of the simulation region are
excluded from the evaluation. The results are shown in Figure 1b
and Supplementary Figures 4, 6 and 8.

On the other hand, not all the identified molecules may have
correct position information. To characterize the localization
precision, we match each of the identified molecules in either
method to the closest ‘true position’ known from the simulation.
Supplementary Figure 5 displays the histograms of the offset in
either the x or y direction with 1, 14, 50 or 125 molecules in the
16-um? simulation area. We fit all the histograms with Gaussian
peaks and plotted the FWHM values as a function of molecule
number in Figure 1c and Supplementary Figures 4, 6 and 8.

In the end, the overall image resolution is determined by both
the density of identified molecules (through the Nyquist sampling
criteria) and the precision of determining their positions. The
number of camera image frames to accumulate enough identi-
fied molecules then links the time resolution to the Nyquist lim-
ited spatial resolution. In the case of the single-molecule fitting
method with high photon number, the maximum identified mol-
ecule density is 0.58 um~2 in each frame, with a high localization
precision of 20 nm (FWHM). Therefore, when one would like
to demand a worse spatial resolution (for example, 60 nm) in
return for a higher temporal resolution, the identified molecule
density is always the limiting factor. On the contrary, compressed
sensing can identify many more molecules at the price of worse
localization precision. In these cases, we determined an ‘optimal’
molecule density so that the localization-limited resolution equals
the density-limited resolution. We then calculated the minimum
number of frames required, at this ‘optimal’ molecule density,
to achieve the given Nyquist limited resolution (see Fig. 1d and
Supplementary Fig. 9).

Sample preparation. Wild-type S2 cells or S2 cells stably express-
ing mEos2-tubulin (gift from E. Griffis in the Ron Vale laboratory
at UCSF) were cultured in Sf-900 II serum free medium (Gibco).
Cells were plated onto Lab-Tek II eight-well chambered no. 1.5
cover glass (Nunc) for fluorescence imaging. Before cell seeding,
each chamber was coated with 0.1 mg/ml concanavalin A for at
least 0.5 h to allow the cells to acquire a fattened, well-spread
morphology. Then cells were seeded into the chambers for 1 h.
For live cell imaging, S2 cells were imaged in the same serum-
free medium as they were normally cultured in. For fixed cell
imaging, cells were fixed with 3% paraformaldehyde and 0.1%
glutaraldehyde in PBS for 10 min, treated with 0.1% NaBH, for
7 min, then permeabilized and blocked with 0.5% Triton-X 100
and 3% bovine serum albumin for 10 min. Staining of tubulin was
done with mouse monoclonal anti-o.-tubulin antibody (1:250,
45-min incubation; clone DM1A, T6199, Sigma) and secondary
donkey anti-mouse antibody (715-005-151, Jackson Immuno Lab),
which we labeled with a mixture of Alexa Fluor 647 and Cy3 dyes
(3 wg/ml, 45-min incubation)*. Fixed cells were imaged in mer-
captoethylamine imaging buffer supplemented with an anti-
bleaching oxygen scavenger system as previously described?.

Optical setup and imaging. The STORM microscope was con-
structed with a Nikon Eclipse Ti inverted microscope equipped
with a motorized xy stage (Marzhduser) and a Nikon perfect focus
system, which stabilizes the focusing. Three diode lasers (405 nm
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from Stradus 405-100, 488 nm from Stradus 488-50, 642 nm from
Stradus 642-110; Vortran) were directly shuttered by the computer.
The 561-nm solid-state laser (Sapphire 561-200, Coherent)
light was controlled by an acoustic optical modulator (Crystal
Technology). Each laser passed through a filter wheel to control
its laser power after the laser output. The four lasers were coupled
and collimated into a telescopic optical path and focused to the
back focal plane of the oil-immersion objective (Nikon Plan Apo
VC 100X/1.40) on the microscope.

A quad-band beamsplitter zt405/488/561/640rpc (Chroma) and
a slider equipped with band-pass filters (ET605/70M for mEos2,
ET700/70M for Alexa Fluo 647, Chroma) were used to sepa-
rate the fluorescence signal. The images were recorded with an
EMCCD camera (Ixon DV897DCS-BV, Andor) at a frame rate of
56.4 Hz. For excitation, the powers of 561 nm (mEos2) and 642 nm
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(Alexa Fluor 647) lasers were 30 mW and 36 mW, respectively,
measured at the back port of the microscope. The activation laser
intensity, typically 10-30 uW, is adjusted so that a high density of
mEos2 or Alexa Fluor 647 molecules is activated in each camera
frame. All instrument control and image acquisition were
performed with home-written software in Python.
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